
THE QUALITY OF THE ESTIMATORS OF THE ETI

THOMAS ARONSSON, KATHARINA JENDERNY, AND GAUTHIER LANOT

Abstract. Measuring the elasticity of taxable income (ETI) is central
for tax policy design. Yet, there are few arguments which support or
infirm that current methods yield measurements of the ETI that can be
trusted. Our first purpose is to use simulation methods to assess the
bias and precision of the prevalent methods used in the literature (IV
estimation and bunching methods). Thereby, we aim at (i) explaining
the huge differences in empirical results, and (ii) providing arguments in
favor of or against using these methods. Our second purpose is to suggest
indirect inference estimation to improve the quality of the measurement.

We find that the IV regression estimators may suffer from considerable
bias and be quite imprecise, whereas the bunching estimators perform
better in our controlled environment. We also show that using more of the
information available in the data, estimators based on indirect inference
principles produce more precise estimates of the ETI than any of the most
commonly used methods.
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1. Introduction and Literature

Background and general purpose. The elasticity of taxable income with re-
spect to the marginal net-of-tax rate (ETI) is a central statistic for tax policy
design.1 In fact, it is often referred to as “sufficient statistic”, i.e. a parame-
ter that provides sufficient information on the behavioral response to marginal
taxation (Feldstein, 1995). Yet, although measurable in principle, there is little
agreement on the empirical size of the ETI. The two dominating methodologi-
cal approaches, the instrumental variable (IV) regression-based approach and the
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bunching approach, fail to produce similar point estimates for the ETI. Point es-
timates based on the regression approach typically exceed point estimates based
on the bunching approach, sometimes by an order of magnitude, even using the
same data. Furthermore, the performance of these methods in terms of bias and
precision is unclear. Despite a large body of literature, policy makers are thus still
largely in the dark when designing the tax system.

Our purpose in this paper is to use simulation methods to assess the bias and
precision of the prevalent methods used in the literature. Thereby, we aim at
explaining the differences in empirical results, and providing arguments in favor
of or against using these methods. Furthermore, we suggest to measure the ETI
with an indirect inference estimator.

Our expectations are based on the reasoning that, given the specification of
the earnings function (and in the absence of information on the hourly wage), all
observations and all earnings histories are informative about the ETI. Yet, both
the bunching approach and regression-based methods use only a fraction of the
available information. The regression approach typically focuses on differences
and disregards the information on bunching, while the bunching approach only
uses the cross-sectional information of observations near the kink points. The
indirect inference method, by contrast, uses both the cross sectional information
and earnings histories. We therefore expect the suggested method to perform
better.

In order to assess the bias and precision of the bunching method, regression-
based methods, and the indirect inference method, we simulate data according to
a well-specified economic model and empirically based assumptions concerning its
parameters (such as the autocorrelation process in incomes). We then set different
”true” values for the ETI and analyze the ability of the different estimators to
reproduce the true parameter estimate in a Monte Carlo study. We also assess
the performance of the estimators depending on the tax environment, such as the
variability of tax rates over time.

Our simulations show that the indirect inference estimator is considerably more
precise than both the bunching and IV estimators under a variety of conditions.
Our analysis helps to reconcile existing results and provides guidance on which
methods to choose, eventually resulting in more credible estimates of the ETI.

Literature and Issues. Let us now turn to the two prevailing estimation meth-
ods of the ETI, the regression-based method and the bunching method. We discuss
the methods in more detail in the context of our model specification in section 4.

The regression approach seeks to identify the ETI by comparing relative changes
in taxable income of tax units or groups of tax units between two periods to relative
changes in their net-of-tax rates. In the early literature, group-based comparisons
of income shares were conducted on cross-sectional data (Feenberg and Poterba,
1993, see also the review by Saez et al., 2012). Feldstein, (1995) was the first
study to use panel data, which allowed to keep the composition of groups of tax
units constant over time to avoid endogenous selection into groups. Later studies
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used difference-in-difference regressions including further control variables instead
of simple group mean comparisons.

The regression-based approach faces two main methodological challenges. First,
following tax units over time introduces the problem of mean reversion, which is
akin to an initial conditions problem, and describes the correlation between the
error term and the dependent variable in first differences. A high-income tax unit
in the initial period is likely to have a lower income in the following period for
idiosyncratic reasons, irrespective of tax rate changes. The mean reversion prob-
lem is typically addressed by controlling for the initial income level.2 Second, the
marginal net-of-tax rate is an endogenous variable to the change of the income
level in directly progressive tax systems, and instrumental variables techniques are
used to account for this endogeneity. A common instrument for the change in the
net-of-tax rate is a hypothetical change in the net-of-tax rate that uses the tax
schedules of the period for which the ETI is to be measured, but applies them only
to the start-year income (Auten and Carroll, 1999; Carroll, 1998; Gruber and Saez,
2002). Weber, (2014) argued that using the initial income level for the instrumen-
tation does not solve the endogeneity problem, and suggests to use higher-order
lags of the income instead.

Regression-based estimates of the ETI differ greatly across methods and coun-
tries (see, for example, Neisser, 2017, who shows that estimates range roughly
between -1.5 and 2). Some of these differences can be explained by conceptual
differences, such as different tax systems and taxpayer types. For instance, the
ETI is expected to be higher when the share of self-reported income is large, and if
deduction possibilities are abundant (Doerrenberg et al., 2017; Kleven and Schultz,
2014; Kopczuk, 2005). Other differences reflect methodological advances, such as
the proper instrumentation of endogenous variables. The approach of Feldstein,
(1995) does not use any instrumentation to account for the endogeneity of the
net-of-tax rate, and yields large elasticity estimates, ranging roughly between 1
and 3. Using US data and controlling for lagged income, Gruber and Saez, (2002)
obtain elasticities between 0.4 and 0.6, depending on the income control. Weber,
(2014) shows that instrumentation with longer time lags of the instruments leads
to baseline estimates of the ETI that are twice as large as those found by Gruber
and Saez, (2002), using the same data.

The bunching approach provides an alternative method to estimate the ETI.
Modern income tax and benefit systems are usually piecewise linear: the marginal
tax rate is typically constant within well defined intervals of the taxable income,
while it changes in a discontinuous manner between intervals. This creates either
kinks or notches to the budget constraint of the tax payer. At a kink point, the
marginal tax rate changes in a discontinuous fashion (e.g., between two propor-
tional tax brackets), while the tax due changes in a discontinuous fashion at a

2As we will argue in part 4, it is not clear that this control variable will solve the missing
variable problem.
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notch. In practice, notches occur less frequently than kink points. We thus focus
on kink points when discussing the methodological approach.3

Kink points help identifying the ETI based on the behavior of agents located
at or close to the kink points. Household tax positions will typically bunch at
any kink of the tax schedule. Optimizing individuals choose taxable income so
as to equalize their marginal rate of substitution (MRS) between the utility cost
of acquiring an additional unit of income (e.g., in terms of leisure foregone) and
the disposable income to the marginal net-of-tax rate. At a kink point, economic
theory predicts that all tax units whose MRS is less than or equal to the net-of-
tax rate in the first, but not the second bracket should generate taxable income
up to that kink point exactly. The amount of tax units at the kink point can
therefore identify the average responsiveness of tax units to the marginal tax rate
(i.e., the ETI), by contrasting the excess mass of bunching tax units to a counter-
factual income distribution in the absence of a kink point. Bastani and Selin,
(2014), Chetty et al., (2011), Hargaden, (2015), Kleven and Waseem, (2013), and
Saez, (2010) use the amount of bunching relative to a theoretical counter-factual
without bunching, to measure the behavioral response to the tax code. Kleven,
(2016) provides a recent methodological review.

Similar to the regression approach, the bunching approach to measuring the
ETI faces methodological challenges. The first challenge is that the construction
of a counter-factual income distribution in the absence of a kink required to oper-
ationalize the measurement is not straightforward, and its functional form matters
for the result. Furthermore, as the distribution of taxable income depends on the
tax rate, the actual distribution above the kink is not suitable to fit a counter-
factual, as it is affected by the tax rate change even if tax units choose higher
incomes than the kink income.4 The second challenge is that the bunching typi-
cally occurs not only at the exact kink income, but in an interval, which has to be
specified by the researcher. The third challenge is that the estimator is local by
definition, and its validity is restricted to a particular income level, and possibly
household type at that level. The fourth challenge is that optimization frictions
are likely to bias the estimates downwards, especially in the case of wage earners
(Bastani and Selin, 2014; Chetty et al., 2013).

Both regression and bunching estimators only use a limited amount of the
data available. Regression methods are typically based on a linearization of the
budget constraint and do not take into account that tax kinks have an influence
on behavior, while bunching methods use cross-sectional information only.5 By

3For discussions on notches, see Hargaden, (2015), Kleven and Waseem, (2013), Kleven,
(2016), and Slemrod, (2013), for example.
4Chetty et al., (2013) evade using a functional form, and instead use regional variation in
information on the EITC schedule to construct counter-factual income distributions.
5An exception in the context of health spendings are Einav et al., (2015, 2017), who allow
for inter-temporal substitution of spendings.
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comparison, many earlier studies on the labor supply (see the reviews by Blun-
dell and Macurdy, 1999 and Blundell et al., 2007) used maximum likelihood (ML)
methods to estimate jointly the behavioral parameters and the parameters that
describe the distribution of heterogeneity in the population. In practice, while ML
methods are suitable to overcome the limitations of the regression and bunching
estimators in general, they are analytically difficult to apply in contexts where the
analyst wishes to account for repeated observations over time or/and when the
distribution of the unobserved components of the model is not normal. Modern
simulation based methods provide a possible alternative by combining the advan-
tages of ML estimation with mathematical feasibility. We suggest to use indirect
inference principles (see Gouriéroux et al., 1993 for details) to estimate the ETI.

The indirect inference approach has been applied in different contexts (see
Browning et al., 2010, Low and Pistaferri, 2015, and Nenov, 2015, for example),
but not in the literature measuring the ETI. It relies on two elements; first, a
model which potentially generates the data but depends on a set of unknown
parameters, among those the ETI, and, second, a large enough set of auxiliary
statistics which can be estimated on the sample data as well as on the simulated
data from the model for any value of the parameters. Assuming the theoretical
model is a good description of the process that generates the observed data, the
values the auxiliary statistics take when measured from the observed data will be
similar to the values of the same statistics when measured from the simulated data
at the correct parameters. Gouriéroux et al., (1993) show that the parameter values
that minimize the distance between the estimated auxiliary statistics obtained from
the sample data and the ones obtained from the simulated data will have good
statistical properties and in particular (asymptotic) unbiasedness.

The empirical evidence is captured by the measurement on the observed sample
data of auxiliary statistics. The inference is indirect since the choice of parameter
estimates for the model is guided by the ability of the simulated data to generate
auxiliary statistics values that are close (or identical) to the ones the empirical
data generates. The method can be applied in any context where it is (relatively)
easier to simulate data from a given theoretical model than it is to calculate the
moments or the likelihood the theoretical model implies. We argue that this is in
general the case in the context of the estimation of the ETI.

Contribution. Even accounting for conceptual, methodological and data differ-
ences, the literature has not been able to narrow down the plausible size of the
parameter even by order of magnitude. As we indicate above, point estimates of
the ETI are also different between the regression and the bunching approach, with
bunching results being arguably smaller.6 This raises concerns about the reliability
of the estimates obtained.

6For example, Kleven and Schultz, (2014) report that their estimates obtained from a large
Danish tax reform is an order of magnitude larger than the result obtained by Chetty et
al., (2011) using a single large Danish kink. We report some illustrative estimates from
the literature in Tables 18 and 19 in Appendix B.
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In the following, we will use the term “conventional methods” when referring
to the regression and bunching methods of estimating the ETI. One contribution
of our study is to assess the performance of these conventional methods, in terms
of bias and precision, using Monte Carlo simulation techniques. Another is to use
indirect inference estimators, which are novel in the context of ETI estimation, and
compare their performance with the performance of the conventional estimators.

We find that the IV regression estimators may suffer from considerable bias
and be quite imprecise, whereas the bunching estimators perform better in our
controlled environment. We also show that using more of the information available
in the data, estimators based on indirect inference principles produce more precise
estimates of the ETI than any of the conventional methods.

The paper is structured as follows: In part 2, we set up a simple behavioral
model, which we use to simulate data as described in part 3. In part 4, we describe
the estimators, both conventional and newly suggested, that we apply to our sim-
ulated data. In part 5 we present and discuss the results. Concluding remarks are
presented in part 6.

2. Behavioral Model

General framework. In order to simulate data generated through optimization
behavior of individuals, we need a behavioral model that describes the choice of
taxable income in response to the net-of-tax rate. The general framework we
present here is designed to provide a simple model in which the main methodolog-
ical questions are nevertheless relevant. For this reason, we focus on labor income
and assume that individuals respond to the wage they are offered. In response to
an offered wage, individuals determine their level of work effort, and together the
offered wage and the labor supply determine a given individual’s gross earnings.

The model presented below assumes that labor is the only income source,
and that the utility is quasi-linear in private consumption. The reason for these
simplifications is that we aim to define the most stylized model framework that
will still reflect the core estimation issues in the literature. Both assumptions can
of course be relaxed in principle. In fact, we argue in part 4 that the estimator
we propose is more suited to relax these assumptions than the methods currently
used in the ETI literature. Our exact specification is the one adopted by Saez,
(2010), and therefore corresponds exactly to the seminal bunching approach. As
we show below, the model also reproduces the general specification used in the
regression-based approach, where it is more common to state the reduced-form
relationship between the change in income and the change in the net-of-tax rate
directly than to formulate a complete structural model (see, e.g., Gruber and Saez,
2002). Consequently, our model provides a favorable framework for the estimators
we analyze.
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The specification rests on the preferences which yield the basic log linear spec-
ification of the labor supply function

u(c, h) = c− γ
η

1 + 1/α

(h
η

)1+ 1
α
, (1)

where α, γ and η are all positive.7 The labor supply function takes the form:

lnh∗(w, η) = −α ln γ + α lnw + ln η. (2)

Equation (2) gives a direct interpretation to the parameters of the utility function:
α is the wage elasticity of the labor supply, and both η and γ describe the dis-
utility of work. γ determines the average disutility of work, while η is assumed
to be one on average and introduces heterogeneity between individuals. η > 1
corresponds to a below-average disutility of work, while η < 1 corresponds to an
above-average disutility of work. Observe that the specification excludes income
effects. Chetty, (2012) suggests that α (the labor supply elasticity) = 0.33 is a
credible central prior based on his reading of the accumulated (US) evidence on
the intensive margin.

The log linear specification has another appealing feature in describing a straight-
forward relationship between the offered wage, w, and gross earnings/taxable in-
come wh. Indeed we have,

lnwh∗ = −α ln γ + (α+ 1) lnw + ln η, (3)

where α+ 1 is now the elasticity of earnings relative to the wage.
In the following, we adjust the model in two dimensions that are relevant to

most empirical applications. First, we account for the fact that we typically do
not observe the wage and the disutility of work, but only earned income. We show
that we can treat the variability of both unknown factors as one single unknown
component in this case. Second, we introduce taxation in the model, which enables
us to define the elasticity of taxable income and to address the endogeneity of the
net-of-tax rate to the optimal choice of earnings. The latter is crucial for the
empirical estimation using the regression approach.

The variability of the wage and the disutility of work. Heterogeneity be-
tween agents in this model stems from the variability of the wage offer and the
variability of the disutility of work. Yet, we only observe earned income which, in
turn, depends on both w and η. It is therefore useful to understand the possible
interactions between the two. Observe that it is always possible to rewrite the
preferences over a bundle (c, h) given the distutility of work η (as defined in Equa-
tion (1)), as the utility over a bundle (c, wh) given the wage w and the disutility
of work η, i.e.,

u(c, h) = c− γ
η

1 + 1/α

(wh
wη

)1+ 1
α
, (4)

7Saez, (2010) does not specify γ as he does not assume η to be one on average.
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and we deduce the preference over consumption and earnings,

v(c, wh) = c− γ
1

1 + 1/α
(wh)1+ 1

α (wα+1η)−
1
α . (5)

When specified in this fashion the disutility of work depends on the quantity

ω ≡ wα+1η.

The behavioral assumption requires then that the worker determines earnings, wh,
so as to maximize v(c, wh) such that c = wh+R, with R being unearned income.
Optimal earnings are then:

lnwh∗ = −α ln γ + lnω. (6)

This property suggests that the marginal distribution of earnings depends on the
distribution of ω only. In the absence of any information about the individual wage,
the distribution of optimal earnings will only be informative about the distribution
of ω overall and not about the distribution of its individual components w and η.
In our simulations, we can thus reduce heterogeneity to the combined unknown
component ω.

Taxation. In order to use the model to predict an individual’s change in optimal
earnings in response to a tax rate change, we need to explicitly model income
taxation. Assume that the individual’s optimal labor supply choice is on a regular
part of the the budget constraint (i.e., not situated at a kink or a discontinuity).
It must then satisfy:

lnh∗ = −α ln γ + α ln
(
τ c[wh∗,x]w

)
+ ln η, (7)

where the amount of tax paid, T (wh,x), depends on the level of earnings as
well as on other variables observed or unobserved, x. The variable τ c[wh,x] ≡
1 − τ [wh,x] = 1 − ∂T

∂wh is the marginal net-of-tax rate, defined as one minus the
marginal tax rate.

We can re-formulate Equation (7) to describe the optimal level of earnings,
which takes the form:

lnwh∗ = κ+ α ln τ c[wh∗,x] + lnω (8)

with κ ≡ −α ln γ. α measures the response of earnings to a marginal increase in the
net-of-tax rate, i.e., the ETI. The expression in Equation (8) sets a starting point
for the methodological discussion concerning the estimation of α where lnω ≡
(α+ 1) lnw + ln η plays the role of the unobserved component.

The specification developed in Equation (8) is the basis for most empirical
measurements of the ETI. It is the simplest framework for understanding the effect
of a tax system on the distribution of earnings. In most cases it is possible to trace
back the empirical specification to our theoretical specification, and in particular
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to interpret the parameter of the net-of-tax rate as the ETI. When using bunching
methods, information from a single cross section is in principle sufficient to obtain
a measurement of the ETI within this exact modeling framework.

Equation (8) is only apparently linear in the unobserved component, since
the unobserved component lnω determines the level of earnings and, in turn, the
marginal net-of-tax rate, τ c[wh,x]. In the presence of a complex tax system where
the marginal tax rate varies with earnings, the relationship between the wage and
earnings is no longer linear. Figure 1 illustrates this fact in a simple piecewise
linear case and in a smooth case. The net-of-tax rate, apparently a regressor in
Equation (8), is endogenous, i.e., optimal earnings and the net-of-tax rate are
determined jointly.

This endogeneity is crucial to the IV regression approach to measuring the ETI.
In the economic model outlined in (8) the unobserved component and the identity
of the tax bracket are correlated by construction, which requires the net-of-tax
rate to be instrumented.

With the availability of longitudinal tax registers, the measurement of the ETI
can take advantage of panel data techniques. The structure of the unobserved com-
ponent, lnω, is then further specified to capture the variability of the data within
and between individual tax units over time. lnω is often represented as the sum of
a permanent component, which reflects permanent differences between tax units,
and a transitory component, which reflects differences over time within a given
tax unit. Longitudinal data provides additional sources of potential instruments
to account for the endogeneity of the net-of-tax rate, and allows the researchers
to ”remove” (difference away) the permanent differences between individual tax
units.

3. Simulation Study

We use the model set out above to simulate data, which are then used to
analyze the bias and precision of the estimators used in the literature. We therefore
need to be more specific about the values the parameters take, in particular the
ETI, and the structure of the unobserved components. We further consider the
characteristics of the tax environment and their implications for the performance
of the estimators.

Based on the model set out above, we focus on a design for our simulation
experiments that is reduced to the essential features. In each experiment we sim-
ulate the earnings history for a sample of individuals facing a tax system with a
single kink. Individuals are assumed to behave in every period according to the
static model we presented above, i.e., we simulate our synthetic data according to
the model that is described in Equation (8). We generate a panel of the optimal
choice of 10000 individuals per year for 12 years. For each realization of the simu-
lated data we apply a variety of estimators (bunching, IV, and Indirect Inference
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Figure 1. Optimal earnings and the unobserved component,
smooth and piecewise linear tax systems

lnω

lnwh∗

ln k − α ln τ c0 ln k − α ln τ c1

ln k

lnω

ln τ c

ln k − α ln τ c0 ln k − α ln τ c1
Note: The figure illustrates the effect of the tax system on the relationship
between the unobserved component, optimal earnings, and the net-of-tax
rate. In a single-kinked progressive tax system (with a kink at k and mar-
ginal net-of-tax rates τ c0 and τ c1 below and above the kink respectively), the
unobserved component lnω is positively correlated with optimal earnings
lnwh∗, and negatively correlated with the marginal net-of-tax rate.
In the upper graph, the upper (thinner) line indicates the relationship be-
tween optimal earnings and the unobserved component in the absence of
taxation. The piecewise linear relationship (bold) corresponds to the same
relationship with a piecewise linear tax system, while the dashed line de-
scribes the relationship the transition between the marginal net-of-tax rates
is continuous.
The lower graph shows how the marginal net-of-tax rate responds to changes
of the unobserved component. Over the interval (ln k−α ln τ c0 , ln k−α ln τ c1 )
optimal earnings are exactly k.

estimators) to obtain estimates of the ETI.8 We repeat this process a thousand
times.

In order to ensure the robustness of our results, we vary the framework of
our simulation in several dimensions: We consider three different ”true” values
for α, the ETI: 0.3, 0.6, and 0.9. Furthermore, we vary both the structure of the

8We describe these estimators in detail in part 4.
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unobserved component ω and the tax environment. In the following we describe
the latter two dimensions in more detail.

Structure of the unobserved component. We decompose the unobserved
component, lnωit, into permanent and transitory terms. Furthermore, the struc-
ture of the unobserved component is then modulated in terms of the share φ of its
variance that is attributed to the permanent effect. In summary we have

lnωit ≡ σωφuPi + σω
√

1− φ2uTit ≡ σPuPi + σTuTit, (9)

where uPi is the permanent component for individual i, and uTit is the transitory
shock which affects individual i at time t. To simplify the notations we set σP ≡
σωφ and σT ≡ σω

√
1− φ2.

In the simulations we assume that independent realizations of uPi are drawn
from a standard normal distribution. The transitory component can take two
alternative forms: First, following Weber, (2014) we assume that the transitory
component follows an AR(1) process with autocorrelation ρ

uTit = ρuTit−1 + λit,

where λit is an innovation. We set the variance of the transitory shock uTit equal
to 1, i.e so that: V[λit] = 1− ρ2. Alternatively, the transitory shock can take the
form of a MA(1) process with parameter θ, so that

uTit = ξit + θξit−1,

where ξit is an innovation. Again we set the variance of the innovation so that the
variance of the transitory component is equal to 1: V[ξit] = 1

1+θ2
.

In this way, by varying the value of φ and depending on the precise form of
dependence of the transitory term, we can vary the stochastic structure of the
unobserved component, while keeping its overall mean and variance constant. The
two models imply that the autocorrelation of earnings growth is negative when
the transitory processes are stationary. In the case of the AR(1) model the first au-

tocorrelation is corr[∆ ln yt,∆ ln yt−1] = ρ−1
2 , while for the MA(1) specification the

first autocorrelation takes the form corr[∆ ln yt,∆ ln yt−1] = − (θ−1)2

1+θ2+(θ−1)2
. These

expressions suggest that we can deduce realistic values for either parameters from
the observed characteristics of the dynamics of earnings. Estimated on Swedish
registers, the raw earnings growth first autocorrelation is about −0.2.9 Hence, we
set ρ = 0.6 when we consider an AR model and θ = 0.45 when we consider instead
an MA model.

9We obtained these figures using panel register data on Swedish labor income (ASTRID)
from 2002 to 2013. The second autocorrelation is about −0.06 and the autocorrelations
with longer lags take values one order of magnitude smaller in absolute value. Therefore,
we focus on the first autocorrelation. Browning and Ejrnæs, (2013) report a broadly
comparable autocorrelation pattern using Danish register data.
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While the two models can be made to yield similar behavior for optimal earn-
ings growth, they are distinct. The AR(1) model for the transitory shock in
earnings levels implies that earnings growth satisfies another AR(1) model with
the same autocorrelation (and the random component of this AR model can no
longer be understood as an innovation since by construction it is correlated with
the lagged dependent variable). The model of earnings growth when the transi-
tory component is an MA(1) process becomes an MA(2) (with specific constraints
on the parameters of the MA). This means in the MA case that beyond two lags
the earnings growth is no longer autocorrelated, whereas the autocorrelation never
disappears (it decreases geometrically with the lag length) in the AR context.

The distribution of the unobserved component lnω is drawn from a normal
distribution with variance σω equal to 0.7 throughout. κ in equation (8), which
can be understood as the mean log earnings in the absence of taxation, is set equal
to 12. These values are chosen to reproduce broadly the feature of the Swedish
distribution of earnings in 2007, the year for which Ericson et al., (2015) describe
the components of earnings, hours, and wages in Sweden in much detail.

We allow the share of the variance of the unobserved component that can be
attributed to the permanent part, φ, to vary between 0.25 and 0.75 in increments
of 0.25. In the extreme, when the share φ is equal to 1, individuals have exactly
identical tastes in each time period and therefore their past choices are perfectly
correlated with current choices. Lower levels of this share describe individuals
with tastes that vary substantially from one period to the next. This determines
whether the past quantities (earnings levels, net-of-tax rates, etc.) are good in-
struments for current net-of-tax rates.

Tax environment. In each year, we use a tax system that features two differ-
ent marginal tax rates and a single kink point. Given these features, we simulate
two different sets of tax environments, depending on whether or not the analyzed
estimator uses the panel dimension of the data. Both the IV regression and the In-
direct Inference estimators use the panel dimension, while the bunching estimator
uses only cross-sectional information.

For the panel estimators, we choose four different tax environments that differ
both in terms of tax rates and their time paths. We report the details of these
tax environments in Table 17 in Appendix A. Our first tax environment (SW) is
a simplified version of the Swedish income tax system over the period 2002-2013.
In general, the Swedish income tax system consists of a local tax rate that applies
to all income, and a national tax rate that applies to all income that exceeds a
certain threshold income. We use the sum of the municipal and county level tax
rates in one single Swedish municipality (Ume̊a) as the local tax rate and then add
the national marginal tax rate. The kink point represents the income level above
which individuals pay the national income tax, and varies over time. This first tax
environment is a stylized version of the one a researcher would face in practice.
Yet, it contains very little variation, as the tax rates only change once in 2005 (the
kink points change every year).
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In order to assess the role of the tax environment, our second environment (DK)
uses a more variable sequence of tax rates. In particular, we use the lower two
tax rates of the Danish tax system described in Kleven and Schultz, (2014), which
is praised by the authors for its variability, in particular regarding the direction
of tax rate changes. In order to keep the mean tax rates comparable to our first
tax environment, we adjust the Danish tax rates accordingly. Effectively, we use
a hybrid tax environment with the Danish variability of tax rates, but with the
Swedish mean tax rates. As the direction of the tax rate change is considered
crucial for the bias by some authors (see for example Weber, 2014), our third and
fourth tax environment are sorted versions of the second environment. In the third
environment, the spread between the two tax rates increases monotonously (DKi),
while it decreases in the fourth environment (DKd).

For the bunching estimator, we do not vary the structure of the unobserved
component. Instead, we apply two different tax environments: a large-kink (20
percentage points) and a small-kink (10 percentage points) environment, in which
we keep the two tax rates constant over all years, so that only the location of the
kink point changes. In all other aspects, the details of the simulations are left
unchanged.

4. Estimators

We will now analyze the ability of the different methods used in the literature
to measure α. In order to achieve that aim, we implement the methods that
prevail in the literature on our simulated data. Furthermore, we implement our
newly suggested Indirect Inference estimator and compare its performance to the
prevalent methods.

Regression-Based Estimators (differences). We base our simulations of panel
regression estimations on two influential studies, Gruber and Saez, (2002) (GS) and
Weber, (2014) (Weber). Both studies use the same specification for their estimat-
ing equation, but differ in the instrumentation of the endogenous variables.

The core idea of the panel regression approaches is to regress the change in
the tax units’ incomes on the change of their net-of-tax rates between two periods
of time, which we will refer to as start year and end year. The difference between
start year and end year is typically between one and three years, and will be
denoted by d. The literature has identified two core challenges to the regression
approach, which are the endogeneity of the net-of-tax rate, and the correlation
between the error term and start-year income (Auten and Carroll, 1999; Gruber
and Saez, 2002; Saez, 1999, 2003; Weber, 2014).

GS was not the first, but the most influential study to address both challenges.
In order to control for the endogeneity of the net-of-tax rate, they instrument
the net-of-tax rate with a hypothetical net-of-tax rate based on tax units’ base-
year incomes. This base-year instrumentation was very influential and has been
refined, but not substantially changed, by the subsequent literature. To control
for the correlation between the error term and start-year income, GS control for
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base-year income both in logs and as a spline in levels. They argue that two income
controls are necessary because the error term can be correlated with the start-year
income for two reasons: mean reversion and differential income trends across the
income distribution. In addition, GS allow for income effects and include year and
marital status dummies.

GS base their measurement of the ETI on an extended regression model spe-
cified as follows:

∆d lnwhit =β0 + α∆d ln τ cit + β1∆d ln(whit − Tit)

+ β2 lnwhi,t−d +
10∑
j=1

δjSj(whi,t−d) + ∆dεit
(10)

where β0 is a constant (in practice, the constant may be year specific or account
for differences in marital status), whit stands for individual i’s observed taxable
income in year t, Tit ≡ Tt(whit,xit) describes the tax due in period t by individual
i, and τ cit ≡ τ ct [whit,xit] is individual i’s marginal net-of-tax rate in period t.
Therefore whit−Tit captures individual i’s net income and the behavioral reaction
to its change corresponds to the income effect. Equation (10) contains two income
controls, log start-year taxable income , ln whi,t−d, and an income spline of the

start-year taxable income,
∑10

j=1 δjSj(whi,t−d). GS argue that these two terms
can control for correlations between the error term ∆dεit and start-year income
whi,t−d. Note that this estimation equation differs from the model in Equation
(8), since it now contains lagged gross income both in logs and as spline, and a
measure of net income.

GS recognize that the unobserved component and the change of the net-of-tax
rate are likely to be correlated so that the classical regression model assumption
that E[∆dεit|∆d ln τ cit, lnwhi,t−d] = 0 does not hold in general. Hence, they instru-
ment the change of the net-of-tax rate between period t and period t − d with
the hypothetical change of the net-of-tax rate keeping earnings fixed at the level
observed in period t− d, whi,t−d. This hypothetical change ∆d ln τ̃ ct is defined as

∆d ln τ̃ ct ≡ ln τ ct [whi,t−d,xit]− ln τ ct−d[whi,t−d,xi,t−d],

and describes the marginal change to the tax system over time all else constant.
By using ∆d ln τ̃ ct to explain the observed change of the net-of-tax rate, GS assume
that E[∆dεit|∆d ln τ̃ cit] = 0. Obviously the quality of this hypothetical change as
an instrument remains an empirical question in practice.

In our setting, we simulate the GS estimator adjusted to the complexity of the
model that generates our data, i.e., we do not control for factors that do not play
a role in our simulated setting (such as marital status, income effects, and year
effects). In addition, we do not include splines (our simulation experiment focuses
on variations of the tax system over time as the only sources of variation for the
observed distribution of earnings). We control for start-year log earnings in order
to address mean reversion due to shocks on wage and the disutility of work. Our
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application of the GS methodology to the simulated data is thus based on the
model10

∆d lnwhit = β0 + α∆d ln τ cit + β lnwhi,t−d + ∆dεit, (11)

instrumenting the true change in the net-of-tax rate ∆d ln τ cit with the hypothetical
change ∆d ln τ̃ ct .

Weber Instrumentation. Weber, (2014) argues that the instrument ∆d ln τ̃ ct is
not exogenous as it relies on base-year income, which may be correlated with the
unobserved term ∆dεit.

Starting with the case where there is no transitory serial correlation, i.e., ρ = 0
or θ = 0, Weber argues that functions of the start-year income whi,t−d are en-
dogenous as they are correlated with the start-year income. In particular, the GS
instrument ∆d ln τ̃ ci,t is only exogenous if Cov[∆d ln τ̃ cit,∆dεit] = 0. If the predicted
change in the net-of-tax rate depends monotonously on the start year’s income
level whi,t−d then it is correlated with the start year’s transitory income com-
ponent. If the tax reform is a tax rate increase, all else equal, an increase in
transitory income in the start year causes both an increase in the predicted tax
rate change and a decrease in the transitory income change (the error component
in first differences). The GS instrument is therefore negatively correlated with the
error term and the estimate is lower than the true ETI. In the AR(1) case, the
covariance between ∆dεit and lnwhi,t−d decreases with the serial correlation of
the transitory component. Therefore for moderate serial correlations any quantity
defined using lnwhi,t−d will covary with ∆dεit and the measurement of the ETI
will be inconsistent. More generally, the direction of the IV estimation bias of
the ETI depends on (i) the covariance between the net-of-tax rate change and the
start year income level, and (ii) the direction of the tax rate change.

Weber argues that the following alternative instrument involving a deeper lag
is preferable:

∆d,k ln τ̃ cit ≡ ln τ ct [whi,t−k−d,xit]− ln τ ct−d[whi,t−k−d,xi,t−d]. (12)

This is the predicted change in the net-of-tax rate constructed using the tax unit’s
income k periods before the start year t − d. The GS instrument is obtained
when k = 0. Weber shows that instruments constructed using earnings one
period before the start year (i.e. such that k = 1) yield a consistent estimator if
the unobserved component is not autocorrelated at any order. If the unobserved
component follows a MA(i), Weber argues that instruments relying on earnings
lagged i+1 or more periods yield consistent estimators of the ETI. Earnings lagged
two or three periods satisfy this requirement in the case of our MA(1) process. For
an AR process, even earnings observed in a distant past fail to satisfy the Weber

10Note that due to mean reversion, lagged income plays a role even if the data generating
process is based on a quasi-linear utility function and shocks to wage and preferences are
not serially correlated. In a more general model, this could make income effects hard to
identify.
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condition. Yet, in the case of an AR(1), Weber suggests that considering earnings
in a distant enough past would provide ”practically” acceptable instruments.11

Using the same data, GS and Weber analyze a reform where the tax increases
and the tax rate change increases with the income level. Weber’s results suggest
that her estimates of the ETI, keeping the specification constant, can be much
larger if further income lags are used to construct the instrument. Yet, direct
comparisons with GS are difficult as the estimates depend on details of the spec-
ifications (such as the selection of years, and whether or not an income spline is
included as a control variable), and generally the variability around the estimates
is large.

Controlling for Mean Reversion. It is interesting to note that the IV regres-
sion based approaches reviewed above simultaneously use lagged income as part of
the construction of the instrumental variables and to control for mean reversion,
i.e., the correlation between the residual in first differences and the start-year in-
come level. In the ETI literature, mean reversion was first discussed by Carroll,
1998. In our view, while mean reversion may be the cause of some bias it is not
clear that controlling for lagged income provides a solution. In fact, going back to
our model in Equation (8), replacing lnω with σPuPi + σTuTit, we have

lnwh∗it = κ+ α ln τ cit + σPuPi + σTuTit,

lnwh∗it−d = κ+ α ln τ cit−d + σPuPi + σTuTit−d.
(13)

which in first differences yields

∆d lnwh∗it = α∆d ln τ cit + σT∆du
T
it. (14)

As both ∆d lnwh∗it and σT∆du
T
it contain uTit−d, they are correlated (see also Kop-

czuk, 2003, 2005). This is the reason why GS add lnwh∗it−d as a control variable.
The question here is whether we expect adding lnwh∗it−d as a control to reduce

the bias. One easy way to look at the problem is to replace uTit−d in Equation (14)
by using Equation (13):

∆d lnwh∗it = α∆d ln τ cit + σTuTit − (lnwh∗it−d − (κ+ α ln τ cit−d + σPuPi )). (15)

Hence, while Equation (15) reformulates the model such that it contains the base-
year income instead of the base-year transitory income component in the spirit of
GS, it contains an income component which cannot be observed (and which GS can
not control for): the individual-specific effect uPi . The instrumentation strategy
involving deeper lags of income to generate the instrument ∆d ln τ̃ ci,t in the context

of Equation (14) is no longer adapted to construct a consistent estimator of α if

11Weber uses an AR(j) process in her model setup, but argues that an AR and an MA
process would be empirically indistinguishable. Instead, she tests empirically whether
E[ln yt−d−k∆ ln εt] = 0 can be rejected.
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the model is specified as Equation (15). This is so because the deeper income lags
remain correlated with uPi and therefore ∆d ln τ̃ ci,t would be correlated with uPi . It
is not clear that the latter estimates would be less biased than the first.

Bunching Estimators (levels). We assess the performance of two different
bunching estimators. The first is the original estimator proposed by Saez, (2010).
The second estimator is a parametric version based on the Saez framework, which
assumes log-normality of the unobserved component. We give a more detailed
description of both methods in a related paper (Aronsson et al., 2018).

Following Saez’ intuition for the bunching estimator, imagine that the optimal
level of earnings wh is an increasing function of an unobserved earnings component
ω (which contains the wage and the disutility of work) as well as an increasing
function of the net-of-tax rate (as defined in our model presented in Section 2). In
a tax environment with two net-of-tax rates and one kink, define k as the earnings
level at the kink, τ c1 as the net-of-tax rate for earnings below the kink and τ c2 as
the (lower) net-of-tax rate for earnings above the kink. The earnings distributions
below and above the kink will now follow different distributions: wh(τ c1 , ω) below
the kink and wh(τ c2 , ω) above the kink. Note that the difference between the two
distributions defines the ETI, as it describes the change in earnings due to a change
in the net-of-tax rate. Further observe that for a particular value ω̂, wh(τ c1 , ω̂)
exceeds wh(τ c2 , ω̂). Consequently, the value of ω for which wh(τ c1 , ω) = k is lower
than the value of ω for which wh(τ c2 , ω) = k. This defines a range of ω where
the individual would choose an income above k under τ c1 , but an income below k
under τ c2 . Let us define ω as the lowest value and ω̄ as the highest value in that
range. Individuals with an unobserved component ω ∈ [ω, ω̄] will, according to
Saez, (2010), be observed at the kink.

Given this reasoning, it is possible to express the percentage B of tax units
that bunch at the kink in the following way:

B =

∫ wh(τc1 ,ω̄)

k
f̃(z; τ c1)dz, (16)

where f̃(z; τ c) describes the earnings density given the net-of-tax rate τ c. Saez
approximates B using a trapezoidal approximation,

B ≈
(
wh(τ c1 , ω̄)− k

)(
f̃(k; τ c2)γ(τ c1 , τ

c
2 , k) + f̃(k; τ c1)

)1

2
. (17)

For the isoelastic model (used by Saez, 2010, and described in part 2 in this paper)
the optimal earnings level takes the form

wh(τ, ω) = τ cαω.

Then, wh(τ c1 , wh
−1(τ c2 , k))−k = ((

τc1
τc2

)
α
−1)k, wh−1

z (τ c, z) = 1
τcα , and γ(τ c1 , τ

c
2 , k) =

(
τc1
τc2

)
−α

. Substitution in the approximate expression (17) gives Saez’s equation (5)
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exactly, which implicitly defines the ETI, α, given the observable parameters B,
f̃(k; τ c1), and f̃(k; τ c2)γ(τ c1 , τ

c
2 , k). In practice, in order to measure these parameters,

the researcher has to choose three intervals: one interval around the kink to define
which tax units are considered to be part of B, and two symmetric intervals on
each side of the kink interval that define the area based on which the densities
f̃(k; τ c1) and f̃(k; τ c2)γ(τ c1 , τ

c
2 , k) are computed. When applying the Saez bunching

estimator, we choose each of these intervals to be one percent of the kink income.
The parametric version relies on the log-normality of the distribution of the

unobserved component. It is then straightforward to derive the likelihood of obser-
vation in the neighborhood of the kink and obtain maximum likelihood estimators
of the parameters of the model, in particular the two density functions f̃(k; τ c1)

and f̃(k; τ c2). Two possible estimators of the ETI can be directly derived from the
maximum likelihood estimates. The first estimator corresponds exactly to Saez’s
estimator in the log normal case evaluated at the ML estimates

α̂SaezN =
2

ŝ

1

ln τ c1 − ln τ c2

Φ(ŝ ln k − λ̂2)− Φ(ŝ(ln k − δ)− λ̂1)

φ(ŝ(ln k − δ)− λ̂1) + φ(ŝ ln k − λ̂2)
, (18)

where ŝ, λ̂1, and λ̂2 estimate locations and scale parameters of the log-normal
model (λ̂1 > λ̂2). The second estimator uses the behavioral model framework to
obtain an estimator of the ETI as a function of the parameters directly

α̂norm =
λ̂1 − λ̂2

ln(τ c1)− ln(τ c2)

1

ŝ
. (19)

We can show that these two ML based estimators are in strict relation with one
another. In our simulations, we will use Saez’ original estimator as in Equation
(17), and the parametric version presented in Equation (19).

Indirect Inference (levels and differences). Given the specification of the
earnings function (and in the absence of any information on the wage), all obser-
vations and all earnings histories are informative about the ETI. Yet, each of the
conventional approaches described above uses only a fraction of the available in-
formation. The regression approach only focuses on differences and disregards the
information on bunching, while the bunching approach only uses the cross-sectional
information of observations near the kink point. Indirect inference allows us to
combine the information from the earnings levels and earnings growth in order to
obtain better behaved estimators of the ETI. While our particular focus here is on
a simple behavioral model, the same principle can be extended to more demanding
environments.

The indirect inference approach relies on an assumption concerning the data
generating process. In our case, the data is generated according to the economic
model structure (preferences and constraints) and the assumptions concerning the
structure and distribution of the unobserved components. The maintained hy-
pothesis throughout is that the modeling structure is the correct one, however the
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exact parameter values which generate the sample data at hand are unknown. De-
note Ξ the vector of parameters of the model (under the restrictions we discussed
in the model section)

Ξ = (α, κ, σω, φ, ρ),

and denote Ξ0 the particular parameter vector which generates the data. Ξ0 is
unknown and the statistical problem is concerned with its measurement.

On the basis of the observed data we can measure the auxiliary statistics,
which contain information about Ξ0, and we denote this measurement ŝ0 ≡ ŝ(Ξ0).
Unfortunately, we are unable in general to retrieve directly an estimate of Ξ0 from
ŝ0. The relationship between the parameter vector which generate the data and
the vector of auxiliary statistics is typically too complex or even beyond our ability
to characterize completely to be able to ”inverse” it.

The method of indirect inference suggests that we can obtain good estimates
of Ξ0 by using the modeling structure to simulate synthetic data and calculate the
vector of auxiliary statistics on the synthetic data given a guess, Ξg, for the value
of the parameter vector that generates the data. This simulation step provides us
with a simulated measurement ŝ(Ξg) of the auxiliary statistics.

While it is not feasible to determine directly how far a given guess Ξg is from
the true value of the parameters Ξ0, we are able to evaluate the distance between
the vectors of auxiliary statistics ŝ0 and ŝ(Ξg). The intuition is therefore that if Ξg
is such that ŝ(Ξg) ≈ ŝ0, i.e., Ξg allows the simulated auxiliary statistics to match
the observed values of the auxiliary statistics, then Ξg ≈ Ξ0. Ξg is then a good
estimate of the true value of the parameter vector.

An indirect inference (I-I) estimator for Ξ0 is then the vector Ξ̂I-I(ŝ0) which
minimizes the distance Q(Ξg, ŝ0, A) between the observed and the simulated aux-
iliary statistics. A natural distance is the Euclidian distance

Q(Ξg, ŝ0, A) = (ŝ0 − ŝ(Ξg))′A(ŝ0 − ŝ(Ξg)),

where A is a constant positive definite matrix. In effect, we are using the minimiza-
tion of the objective Q(Ξg, ŝ0, A) to solve approximately the equation ŝ0 = ŝ(Ξ)
for Ξ .

The large sample theory in terms of the number of observations and the number
of simulated observations is well developed and will apply to our context directly.
In particular, the I-I estimator is asymptotically normally distributed for any posi-
tive definite A. Given a sensible choice for A, estimates of the asymptotic variance
covariance matrix of the estimator exist and can be calculated from quantities that
are derived from the objective function at its optimum. Gouriéroux et al., (1993)
or Jiang and Turnbull, (2004) provide presentations of the large sample theoretical
properties of the method and describe a wide array of applications.

In the current paper we focus on showing that I-I can provide a feasible solution
to the issue of unbiased estimation. We will not pursue the question of producing
the most efficient I-I estimator. We therefore limit ourselves to the case where A
is set to the identity matrix . Hence any improvements that are obtained in terms
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of bias by our implementation of I-I do not preclude further potential efficiency
gains that can be obtained by a more adapted (but more demanding) choice of A.

In practice we use the default GMM optimizer in Stata to compute the I-
I estimates. The starting values are obtained systematically from the auxiliary
statistics of the sample, such that all starting values are endogenously determined
based on the data.
Choice of auxiliary statistics. We consider auxiliary statistics from both types
of conventional estimators, i.e., cross sectional statistics including bunching behav-
ior, and panel statistics such as the autocorrelation coefficient of taxable income.
Furthermore, we focus on statistics which can be calculated directly from the sam-
ple data (and therefore from the simulated data). Our choice of auxiliary statistics
is guided mainly by the principle of analogy. Since we estimate all the parame-
ters of the model, i.e., the ETI as well as all other parameters which arise from
our distributional assumptions (location and scale), the composition of the unob-
served component as well as the dynamics of the transitory component, we require
auxiliary statistics which will capture separately distinct features of the observed
distribution. To achieve this, we will use five sets of auxiliary statistics: means of
income levels and growth, the proportions of tax units above and below the kink
point, transitions between the two tax brackets, as well as variances and covari-
ances of income levels, income growth, and the net-of-tax rate. We describe these
statistics in detail in appendix C.

5. Results

Overall, our simulation results show that the conventional estimators can be
very variable, and in the case of IV-regression estimations substantially biased. We
first discuss the regression-based estimators, then turn to the bunching estimators,
and finally show the results for the indirect inference estimator.

Regression-based estimators. The regression-based estimators we consider are
based on Equation (11) estimated using instrumental variables procedures. The
performance differences between estimators arise from the specific construction of
the set of instruments for the change in the net-of-tax rate and base-year income
control. All instruments are constructed using lagged income/earnings. Distinct
estimators are obtained as the number of lags prior to base-year increases. A
lag of length zero corresponds to the set of instruments Gruber and Saez (2002)
(GS) propose, while higher lags correspond to various forms of Weber’s (2014)
instruments. In the following, we first consider the simulated distribution of the
IV estimator using the GS instrumentation (with lag length k = 0). We increase
the lag length to consider the effect of the Weber instrumentation with lag length
k = 3.

Figure 2 illustrates results for the GS estimator in four different tax environ-
ments as described in detail in section 3. In all histograms presented here, the
true ETI in the simulation is 0.6 (marked by a vertical line), and 50% of the
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variance of the unobserved component is within individuals.12 We find a large
downward bias in all tax environments. The average relative bias is 69% for the
most variable tax environment (DK), and increases to 86% in the least variable
tax environment (SW). Overall, independently of the tax environments the bias
is large. This result carries through for other parameter choices (see Tables 1 and
5). These results suggest that the base-year instrumentation used by GS produces
substantially biased estimates, even though results across tax environments may
be similar.

We now turn to the effect of the instrument choice on the distribution of
the estimated ETI parameter. Figure 3 illustrates how the distribution of the
estimator changes as we increase the lag lengths of the instrument for the net-of-
tax rate and base-year income. The tax environment in all histograms in Figure
3 is the most variable tax environment (DK), i.e., the environment most likely to
yield precise estimates. The top left panel shows results for a lag length of zero,
which corresponds to the GS estimator (the top left panel in Figure 2). The
top right panel presents the distribution of the IV estimator when the earnings are
lagged once to construct the instrument, while the bottom panels show histograms
of the estimates for earnings lagged two and three years before the base year.

We find that with increasing lag length, the bias decreases considerably. For
the MA(1) error structure, the median of the estimated ETI parameters deviates
7% from the true ETI parameter for k = 1, while it is practically unbiased for
k > 1. These results confirm the argument put forward by Weber that using
pre-base-year lagged income for instrumentation reduces the bias of the estimator.
Yet, the decreasing bias is accompanied by a dramatic increase in the variability
of the estimator. Based on the instruments discussed above, the possible values of
the ETI range roughly between zero and one, which corresponds to the range of
parameter sizes on the left part of the Laffer curve (i.e., to the left of and on the
top). Therefore, the Weber instrumentation applied to a dataset of comparable
size to ours (10k individuals observed for 12 years) is not guaranteed to provide
a precisely estimated value; instead, there is considerable uncertainty around the
true value of the parameter. The values of the standard deviation and of the
interquartile range of the simulated distribution reported in tables 2 to 4 for the
AR(1) case and in table 6 to 8 for the MA(1) case show that the variability of the
estimator is substantial in all tax environments. These results are also consistent
with the large standard errors reported by Weber using the data analyzed by GS.13

12The results for other parameter choices (ETI values, variance compositions, and auto-
correlation structures) are similar and are reported in Tables 1 to 8.
13Weber’s data comprises roughly 6000 annual observations, and standard errors range
around 0.3. We report observation numbers and standard errors of several IV regression
studies in Table 18 in Appendix B. The reported estimates show that the variability of
the estimators produced by our simulations, adjusted for sample size, is of comparable size
to the range of observed empirical results.
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Figures 4 and 5 show histograms for the Weber estimator when k = 3, for
distinct tax environment and autocorrelation structure of the unobserved compo-
nent. We can make three clear observations. First, the precision of the estimator
depends on the tax environment. The bottom right panel of each figure shows
results for the stylized Swedish tax environment, which has little tax variability,
while the top left panel shows results for a hybrid tax environment with Danish
variability, normalized to Swedish mean tax rates. The top right and bottom left
panel show results for ordered versions of the hybrid tax environment, where the
difference between the tax rates is either monotonously increasing (top right) or
decreasing (bottom left). With both AR(1) and MA(1) error structures, the hybrid
(and most variable) tax environment performs best in terms of precision, while the
results for the least variable tax environment indicate a severe bias, with a relative
bias exceeding 100%, and an interquartile range that exceeds the parameter size
by an order of magnitude.

Second, the statistics show that for the three variable tax environments, the
estimator is considerably less biased in the MA(1) case than in the AR(1) case.
Both median and average estimates in the MA(1) case are within a close range
(at most 6% deviation) of the correct value for the first three tax environments
(even though unpredictable in the fourth), while the relative bias in the AR(1)
case varies roughly between 5% and 10%. These differences are expected as the
instruments are truly exogenous in the MA(1) case but not in the AR(1) case.

Third, even in the most variable tax environment estimates range roughly from
zero to one. The interquartile range of the estimates is roughly of the same order
of magnitude as the parameter value, putting serious doubt on the suitability
of the estimator. Thus, the results for the regression estimators show that the
endogenous instrument of the GS estimator leads to substantial bias, while lagged
income instruments substantially decrease the precision. The imprecise nature of
the estimates is consistent with the lack of robustness of the estimates obtained in
the literature.

Bunching estimator. Turning to the two bunching estimators (Saez and lognor-
mal, as described in part 4 and Aronsson et al., 2018), Figure 6 shows histograms
for a ”true” ETI value of 0.6 for selected years. The corresponding statistics for
all years are reported in tables 9 to 11. As the bunching estimators are cross-
sectional, we adjust our tax environments, as neither the autocorrelation process
of the unobserved component nor the time pattern of tax rates is relevant. Instead,
the tax environments we analyze here feature a larger and a smaller kink. In both
panels on the left-hand side, the tax environment features a small change in the
net-of-tax rate at the kink (10 percentage points), while on the right-hand side the
change is large (20 percentage points). From top to bottom, the tax year increases,
which in our data means that the kink point corresponds to a higher income level,
with the wage distribution unchanged.

We obtain two main results: First, the bias of both estimators is small. The ML
estimator based on the truncated log-normal distribution performs slightly better
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in terms of bias in general. Notably, the estimators do not consistently perform
better in the large-kink environment. This result is not entirely unexpected, as
the observation numbers to the right of the kink are lower for the larger kink
(given the size of the measurement intervals around the kink), adding noise to
the estimation of the density on the right-hand-side of the kink. Second, both
estimators are considerably more precise than the Weber estimators, and the ML
estimator performs better than the original Saez estimator. The ML estimator’s
standard deviation and inter-quartile range are roughly an order of magnitude
smaller than the same statistics for the Weber estimators.

Indirect Inference estimator. Turning to the I-I estimator, Figure 7 shows
histograms for a true ETI of 0.6 and an MA(1) error process. Statistics for all
specifications are reported in Tables (12) and (13). Compared to the conventional
estimators, the I-I estimator is almost unbiased and very precise. The average
relative bias is around 1% of the true parameter value, and both the standard
deviation and the inter-quartile range are less than half the values of the log-
normal bunching estimator. These results are independent of the tax environment.
Furthermore, the results are similar for the AR(1) error process, suggesting that
the precision of the I-I estimator does not depend on the autocorrelation structure.

In our baseline specifications, we thus find that the IV estimator has the largest
bias and and is the least precise. It appears that the IV estimator can work well in
terms of bias in very variable tax environments, but it requires a large number of
observations to perform well in terms of precision. On the other hand, under the
same conditions both the bunching estimator and the I-I estimator are practically
unbiased, with the I-I estimator being the least variable.

Notably, our baseline simulations do not suggest that bunching-based estimates
are smaller than regression-based estimates in general. However, as any regres-
sion estimate is based on one particular realization of individual errors, bunching
estimates can of course potentially be smaller or larger than the regression-based
IV estimates on any particular dataset, either because they are more precise, or
because the populations who identify either estimate differ. In the following ro-
bustness analysis, we suggest that optimization frictions can explain a systematic
difference that causes the IV estimates to exceed the bunching estimates.

Robustness. Let us discuss the robustness of the three estimators by considering
two distinct modifications of the data generating process: one which modifies the
distribution of the unobserved component, and the other where the behavioral
model is modified.

The first scenario tests the sensitivity of the estimators to a departure from
the log-normality assumption. This modification is motivated by the thought that
both the log-normal bunching estimator and the I-I estimator use distributional
information of the unobserved component. We are therefore interested in how
the results change if the true distribution is not log-normal, while the estimators
assume a log-normal distribution. More specifically, the modified innovations used
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to generate the data are distributed according to a scaled log-student distribution,
while the simulated data within the I-I estimation are assumed to be log-normally
distributed. We allow the number of degrees of freedom of the distribution of
the innovations to change in two ways. In a first case, we set it equal to 5 so
that the distribution of the innovations exhibits fatter tails than the log-normal
distribution while insuring that the first four moments of the distribution exist.
This is the most extreme departure from log-normality that we consider. In a
second intermediate case we set the number of degrees of freedom equal to 10 (the
first nine moments of the distribution of the innovations exist in this case). In
both cases, we scale the innovations such that their variance is equal to 1 and then
proceed with the data generation as we did above.

In the second scenario, we are interested in the effect on the results if only a
portion of the population reacts to taxation. Such a case can be motivated either by
optimization frictions or by a share of true non-responders in the population. The
data is generated such that only a fixed proportion of the population is assumed
to be responsive to the tax system; meaning, in turn, that a fixed proportion of
the population is non-responsive to changes in marginal incentives. We set the
proportion of the population that responds to the tax system to either 50 per
cent or 75 per cent (while maintaining the log-normality of the innovations). This
property is individual specific and not time dependent. Hence we do not generate
data where individuals are alternatively responding and then not responding over
their life cycle. Furthermore when simulated individuals do not respond to the tax
system, we adjust the average earnings among non-respondents so that it matches
that of respondents.

The consequences of these changes to the data generating process are analyzed
in Tables (14) to (16), where the ETI is set to 0.6 and the share of the individual-
specific effect in the unobserved component is set to 50 per cent.

We observe that the first modification (the departure from the log-normality
assumption) leaves the results for the IV estimator and the bunching estimator
essentially unchanged. For the I-I estimator, it slightly increases both the bias
and the variability. The variability is now roughly a third (AR case) or a quar-
ter (MA case) of the variability of the IV estimator, and does not exceed (but
mostly undercut) the variability of the bunching estimator. Notably, this is the
case for log-Student’s distributions with both 10 and 5 degrees of freedom. The
distributional misinformation of the I-I estimator reduces its precision, yet it still
outperforms the other estimators.

The second modification (the introduction of non-responding tax units) has
very different effects on the three estimators. It has little influence on the results
of the IV estimator, albeit it slightly increases both the bias and the variability.
By contrast, the estimates of the bunching estimator and the I-I estimator are
scaled down roughly in proportion to the share of responders. That is, while
the IV estimator measures the ETI of the responders only, both the bunching
estimator and the I-I estimator measure the average ETI over all tax units. This



THE QUALITY OF THE ESTIMATORS OF THE ETI 25

result can explain the differences the literature finds between the results of the
bunching estimator and the results of the IV estimator. If there is a share of non-
responders, for instance due to optimization frictions, the bunching method – and
other methods which rely on the structure of the model to explain the data, like
I-I – will on average generate smaller estimates.14

6. Conclusion

This paper departed from the observations that (i) the prevailing estimates of
the ETI differ considerably across studies, and (ii) there are no earlier attempts of
assessing the performance of the estimators used in the literature. We have used
Monte Carlo simulations to assess the bias and precision of the prevalent methods
of estimating the ETI: the regression method (based on different assumptions of
instrumental variables) and the bunching method. We have also examined the
performance of an alternative, simulation-based estimator relying on the method
of indirect inference.

In order to simulate data generated by utility maximization, we assumed that
labor constitutes the only income source and presented a structural labor supply
model producing a log-linear labor supply function and thus also a log-linear in-
come equation (where income is defined as the hourly wage rate times the hours
of work). Albeit simple in structure, this model accords well with those used in
the literature on the ETI. When simulating the data, we distinguished between
different tax environments reflecting (a simplified version of) the Swedish tax sys-
tem for the period 2002-2013 as well as three different mixtures of the Swedish
and Danish tax systems (in order to increase the number of tax rate changes). We
also allowed for both MA(1) and AR(1) processes for the unobserved component
of the model.

To assess the regression-based estimators, we controlled for lagged income in
order to address mean reversion as well as applied the instrumentation techniques
suggested by Carroll, (1998), Gruber and Saez, (2002), and Weber, (2014), re-
spectively. The latter produces an exogenous instrument for the net-of-tax-rate
under more general conditions. We also assessed the performance of two bunch-
ing estimators; one based on Saez, 2010 and the other on our parametric model
(as presented in part 4 as well as in Aronsson et al., 2018). The indirect infer-
ence estimator was derived by minimizing the (Euclidian) distance between the
observed and simulated auxiliary statistics, where the auxiliary statistics are cho-
sen to capture distinct features of the observed distribution. Our concern here
was to examine whether an indirect inference estimator can provide a solution to
the problem of unbiased estimation per se; not to try to find the most efficient
estimator.

Finally, we modified our simulations in two dimensions to test the robustness
of our results. We first changed the distribution of the unobserved component to

14We thank Etienne Lehmann for sharing this suspicion with us.
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test the robustness of the indirect inference estimator with respect to distributional
assumptions. We then assumed that only a fraction of the tax units respond to
taxation, to test the performance of the estimators when there are non-responders,
for example due to optimization friction.

The take home message of the simulations can be summarized by the following
seven main results. First, the precision of the estimators based on the regression
method largely depends on the underlying tax environment as well as on the exact
process of the unobserved component. Albeit not very surprising in itself, this
contributes to explain why estimates based on such approaches differ considerably
between earlier studies. Second, the bias of these estimators largely depends on
the process of the unobserved component. Focusing on the approach to instrumen-
tation suggested by Weber, (2014), we found that the estimators are considerably
more biased in the AR than the MA case, because the instrumentation procedure
produces exogenous instruments only in the MA case. Third, our experimenta-
tion with the lag-lengths of the instruments for the net-of-tax-rate and base-year
income, respectively, showed a possible trade-off between unbiasedness and preci-
sion. Whereas the Gruber-Saez estimator is quite precise and heavily biased (such
that the correct parameter value is outside the estimated confidence interval), the
Weber approach leads to considerably less bias combined with a large decrease in
precision (compared to the Gruber-Saez estimator). We interpret the first three
results to suggest that the regression-based methods do not in general perform
well in our controlled environment.

Fourth, the bunching estimators performed quite well here, despite their prop-
erty to be local in nature; their bias is relatively small and they are much more
precise than the regression estimators based on Weber’s instrumentation approach.
This result is reasonable, considering that the bunching estimators are cross-
sectional, while the problems of bias and imprecision of the regression-based esti-
mators are related to the time-series properties of the unobserved component and
the development over time of the net-of-tax-rates. The local nature of the bunch-
ing estimator is not problematic in this specific case, as our simulated population
is homogeneous with respect to the ETI. Fifth, our suggested indirect inference
estimator performs very well in the model environment set out above. To be more
specific, our results showed that this estimator is almost unbiased and very precise
in each of the four tax environments. Sixth, a change in the true distributional
form of the unobserved component moderately increases the bias and the variabil-
ity of the indirect inference estimator; yet, given the data generating process, it
is still more precise than the alternative estimators. Seventh, the results of the
IV estimator remain essentially unchanged even if we introduce a share of non-
respondents, while the bunching estimators and the indirect inference estimator
measure a smaller ETI, which is scaled down roughly in proportion to the share
of respondents. This result can explain the different magnitudes of ETI measures
between the IV and the bunching estimators found in the literature.
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Future research may take several possible directions. Given the results pre-
sented above, one obvious direction would be to find the most efficient indirect
inference estimator, while another would be to apply the indirect inference esti-
mator to real-world data. The latter is interesting because the parametric model
used above gives a taxable income equation similar to those used in much earlier
research on the ETI, and the indirect inference method seems to perform very well
in this particular environment. Yet, an even more interesting extension would be
to evaluate how different estimators perform in more realistic model environments
with more than one behavioral margin. The main argument for studying income
formation - instead of the more narrow labor supply model - is to allow for several
behavioral margins (in addition to work hours), such as wage formation, tax avoid-
ance, and intertemporal choices. To arrive at unbiased estimates of the behavioral
responses to taxation, both the underlying behavioral model and the estimation
method (as well as the links between them) are important. We hope to address
all these questions in the future.
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Figure 2. Effect of tax environment GS estimator with base-
year instrumentation (k=0) MA(1)

Note: Histograms of Gruber Saez estimator as given in Equation (11) with original start-
year instrumentation which equals Weber instrumentation with lag length (k = 0). 1,000
replications with 10,000 individual observations over 12 years each, facing the tax envi-
ronment given in the graph note. Tax environments: DK Danish tax variability with
Swedish tax rate means, DKi same tax rates, ordered with increasing spread, DKd de-
creasing spread, SW simplified tax system Ume̊a, Sweden. See Table (17) and section (3)
for details. See Table (5) for precise figures.
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Figure 3. Effect of instrumentation lag in GS estimator with
base-year and Weber instrumentation (k=0,1,2,3) MA(1)

Note: Histograms of Gruber Saez estimator as given in Equation (11) with instrumenta-
tion lag length varying between (k = 0, 1, 2, 3). 1,000 replications with 10,000 individual
observations over 12 years each, facing the tax environment given in the graph note. Tax
environment: DK Danish tax variability with Swedish tax rate means. See Table (17) and
section (3) for details. See Tables (5) to (8) for precise figures.
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Figure 4. Effect of tax environment GS estimator with We-
ber instrumentation (k=3) MA(1)

Note: Histograms of Gruber Saez estimator as given in equation (11) with Weber instru-
mentation lag length (k = 3). 1,000 replications with 10,000 individual observations over
12 years each, facing the tax environment in column 3. Tax environments: DK Danish
tax variability with Swedish tax rate means, DKi same tax rates, ordered with increasing
spread, DKd decreasing spread, SW simplified tax system Ume̊a, Sweden. See Table (17)
and section (3) for details. See Table (8) for precise figures.
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Figure 5. Effect of tax environment GS estimator with We-
ber instrumentation (k=3) AR(1)

Note: Histograms of Gruber Saez estimator as given in equation (11) with Weber instru-
mentation lag length (k = 3). 1,000 replications with 10,000 individual observations over
12 years each, facing the tax environment in column 3. Tax environments: DK Danish
tax variability with Swedish tax rate means, DKi same tax rates, ordered with increasing
spread, DKd decreasing spread, SW simplified tax system Ume̊a, Sweden. See Table (17)
and section (3) for details. See Table (1) for precise figures.
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Table 1. Selected statistics of the simulated distribution of
Gruber Saez estimator with base-year instrumentation (k=0),
AR(1)

eti results bias relative bias

ETI FE TE mean sd p50 iqr mean p50 mean p50

30

25

DK 0.10 0.03 0.10 0.04 0.20 0.20 0.66 0.66
DKi 0.07 0.06 0.07 0.08 0.23 0.23 0.77 0.77
DKd 0.07 0.03 0.07 0.04 0.23 0.23 0.77 0.77
SW 0.04 0.05 0.04 0.06 0.26 0.26 0.86 0.86

50

DK 0.11 0.03 0.11 0.04 0.19 0.19 0.63 0.64
DKi 0.07 0.05 0.07 0.07 0.23 0.23 0.76 0.76
DKd 0.08 0.02 0.08 0.03 0.22 0.22 0.74 0.74
SW 0.05 0.04 0.05 0.06 0.25 0.25 0.84 0.84

75

DK 0.12 0.02 0.12 0.03 0.18 0.18 0.60 0.60
DKi 0.08 0.04 0.07 0.06 0.22 0.23 0.74 0.75
DKd 0.08 0.02 0.08 0.03 0.22 0.22 0.72 0.72
SW 0.05 0.04 0.05 0.05 0.25 0.25 0.82 0.82

60

25

DK 0.18 0.03 0.18 0.04 0.42 0.42 0.70 0.70
DKi 0.14 0.05 0.14 0.06 0.46 0.46 0.77 0.76
DKd 0.11 0.03 0.11 0.03 0.49 0.49 0.81 0.81
SW 0.08 0.04 0.08 0.05 0.52 0.52 0.86 0.87

50

DK 0.19 0.03 0.19 0.04 0.41 0.41 0.69 0.69
DKi 0.14 0.04 0.14 0.06 0.46 0.46 0.77 0.76
DKd 0.12 0.02 0.12 0.03 0.48 0.48 0.80 0.80
SW 0.08 0.04 0.08 0.05 0.52 0.52 0.86 0.86

75

DK 0.20 0.02 0.20 0.03 0.40 0.40 0.67 0.67
DKi 0.14 0.03 0.14 0.05 0.46 0.46 0.76 0.76
DKd 0.13 0.02 0.13 0.02 0.47 0.47 0.79 0.79
SW 0.09 0.03 0.09 0.04 0.51 0.51 0.85 0.86

90

25

DK 0.26 0.03 0.26 0.04 0.64 0.64 0.71 0.71
DKi 0.22 0.04 0.22 0.06 0.68 0.68 0.76 0.76
DKd 0.15 0.02 0.15 0.03 0.75 0.75 0.83 0.83
SW 0.11 0.04 0.11 0.05 0.79 0.79 0.87 0.87

50

DK 0.28 0.03 0.28 0.04 0.62 0.62 0.69 0.69
DKi 0.22 0.04 0.22 0.05 0.68 0.68 0.76 0.76
DKd 0.16 0.02 0.16 0.03 0.74 0.74 0.82 0.82
SW 0.12 0.04 0.12 0.05 0.78 0.78 0.87 0.87

75

DK 0.28 0.02 0.28 0.03 0.62 0.62 0.69 0.69
DKi 0.22 0.03 0.22 0.04 0.68 0.68 0.76 0.76
DKd 0.16 0.02 0.16 0.02 0.74 0.74 0.82 0.82
SW 0.12 0.03 0.12 0.04 0.78 0.78 0.87 0.87

Note: Gruber Saez estimator as given in equation (11) with base-year instrumentation (k = 0).
1,000 replications with 10,000 individual observations over 12 years each, facing the tax environment
in column 3. Tax environments: DK Danish tax variability with Swedish tax rate means, DKi same
tax rates, ordered with increasing spread, DKd decreasing spread, SW simplified tax system Ume̊a,
Sweden. See table (17) and part 3 for details.
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Table 2. Selected statistics of the simulated distribution of
Gruber Saez estimator with Weber instrumentation (k=1),
AR(1)

eti results bias relative bias

ETI FE TE mean sd p50 iqr mean p50 mean p50

30

25

DK 0.28 0.11 0.28 0.15 0.02 0.02 0.05 0.07
DKi 0.34 0.38 0.30 0.48 -0.04 0.00 -0.12 -0.02
DKd 0.20 0.17 0.20 0.24 0.10 0.10 0.32 0.32
SW 0.48 1.52 0.23 1.63 -0.18 0.07 -0.60 0.22

50

DK 0.29 0.10 0.30 0.14 0.01 0.00 0.02 0.02
DKi 0.32 0.34 0.29 0.44 -0.02 0.01 -0.07 0.03
DKd 0.23 0.15 0.23 0.21 0.07 0.07 0.22 0.23
SW 0.44 1.35 0.21 1.28 -0.14 0.09 -0.45 0.29

75

DK 0.30 0.07 0.30 0.10 0.00 0.00 0.00 0.00
DKi 0.30 0.24 0.28 0.32 0.00 0.02 -0.01 0.06
DKd 0.27 0.11 0.26 0.14 0.03 0.04 0.11 0.13
SW 0.30 0.79 0.16 0.78 0.00 0.14 -0.01 0.48

60

25

DK 0.56 0.10 0.56 0.14 0.04 0.04 0.06 0.07
DKi 0.58 0.30 0.55 0.38 0.02 0.05 0.03 0.08
DKd 0.40 0.17 0.39 0.23 0.20 0.21 0.33 0.34
SW 0.46 1.16 0.35 1.14 0.14 0.25 0.23 0.42

50

DK 0.57 0.10 0.58 0.12 0.03 0.02 0.04 0.04
DKi 0.58 0.26 0.57 0.35 0.02 0.03 0.03 0.04
DKd 0.45 0.16 0.45 0.20 0.15 0.15 0.25 0.25
SW 0.49 1.47 0.34 0.99 0.11 0.26 0.18 0.43

75

DK 0.59 0.07 0.59 0.10 0.01 0.01 0.02 0.02
DKi 0.60 0.19 0.59 0.25 0.00 0.01 0.00 0.02
DKd 0.52 0.12 0.52 0.16 0.08 0.08 0.13 0.13
SW 0.54 0.65 0.45 0.73 0.06 0.15 0.11 0.25

90

25

DK 0.87 0.10 0.87 0.13 0.03 0.03 0.04 0.04
DKi 0.82 0.23 0.80 0.30 0.08 0.10 0.09 0.11
DKd 0.61 0.18 0.61 0.23 0.29 0.29 0.32 0.33
SW 0.54 0.92 0.44 1.07 0.36 0.46 0.40 0.51

50

DK 0.88 0.09 0.87 0.13 0.02 0.03 0.03 0.03
DKi 0.84 0.21 0.83 0.28 0.06 0.07 0.07 0.07
DKd 0.69 0.16 0.68 0.21 0.21 0.22 0.24 0.24
SW 0.63 0.78 0.53 0.94 0.27 0.37 0.30 0.42

75

DK 0.89 0.07 0.89 0.10 0.01 0.01 0.01 0.01
DKi 0.87 0.17 0.86 0.22 0.03 0.04 0.03 0.05
DKd 0.79 0.13 0.78 0.17 0.11 0.12 0.12 0.13
SW 0.77 0.84 0.64 0.71 0.13 0.26 0.14 0.29

Note: Gruber Saez estimator as given in equation (11) with Weber instrumentation (k = 1). 1,000
replications with 10,000 individual observations over 12 years each, facing the tax environment in
column 3. Tax environments: DK Danish tax variability with Swedish tax rate means, DKi same
tax rates, ordered with increasing spread, DKd decreasing spread, SW simplified tax system Ume̊a,
Sweden. See table (17) and part 3 for details.
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Table 3. Selected statistics of the simulated distribution of
Gruber Saez estimator with Weber instrumentation (k=2),
AR(1)

eti results bias relative bias

ETI FE TE mean sd p50 iqr mean p50 mean p50

30

25

DK 0.27 0.14 0.27 0.20 0.03 0.03 0.09 0.09
DKi 0.39 0.35 0.37 0.50 -0.09 -0.07 -0.29 -0.25
DKd 0.25 0.25 0.25 0.33 0.05 0.05 0.15 0.18
SW 0.56 11.27 0.21 2.41 -0.26 0.09 -0.88 0.31

50

DK 0.28 0.13 0.28 0.19 0.02 0.02 0.07 0.08
DKi 0.37 0.31 0.36 0.40 -0.07 -0.06 -0.22 -0.18
DKd 0.26 0.22 0.25 0.29 0.04 0.05 0.15 0.16
SW -3.05 123.25 0.21 1.87 3.35 0.09 11.17 0.31

75

DK 0.29 0.10 0.29 0.13 0.01 0.01 0.03 0.03
DKi 0.34 0.24 0.32 0.31 -0.04 -0.02 -0.14 -0.07
DKd 0.28 0.16 0.28 0.21 0.02 0.02 0.08 0.07
SW 0.56 2.22 0.24 1.25 -0.26 0.06 -0.85 0.21

60

25

DK 0.54 0.12 0.53 0.16 0.06 0.07 0.11 0.12
DKi 0.74 0.29 0.72 0.38 -0.14 -0.12 -0.23 -0.19
DKd 0.50 0.21 0.49 0.28 0.10 0.11 0.17 0.18
SW 0.88 7.22 0.34 2.04 -0.28 0.26 -0.47 0.43

50

DK 0.56 0.12 0.56 0.16 0.04 0.04 0.07 0.06
DKi 0.70 0.27 0.68 0.36 -0.10 -0.08 -0.16 -0.14
DKd 0.53 0.19 0.52 0.25 0.07 0.08 0.12 0.13
SW 0.96 9.41 0.49 1.64 -0.36 0.11 -0.60 0.19

75

DK 0.58 0.10 0.58 0.13 0.02 0.02 0.04 0.04
DKi 0.66 0.21 0.64 0.28 -0.06 -0.04 -0.10 -0.07
DKd 0.56 0.14 0.55 0.19 0.04 0.05 0.07 0.08
SW 0.81 2.38 0.47 1.13 -0.21 0.13 -0.35 0.21

90

25

DK 0.82 0.12 0.82 0.15 0.08 0.08 0.09 0.09
DKi 1.06 0.23 1.05 0.30 -0.16 -0.15 -0.18 -0.17
DKd 0.79 0.19 0.79 0.26 0.11 0.11 0.13 0.12
SW 0.89 3.42 0.61 1.91 0.01 0.29 0.01 0.33

50

DK 0.85 0.11 0.84 0.15 0.05 0.06 0.06 0.06
DKi 1.01 0.22 1.00 0.30 -0.11 -0.10 -0.12 -0.11
DKd 0.82 0.17 0.82 0.22 0.08 0.08 0.09 0.09
SW 1.12 5.27 0.69 1.61 -0.22 0.21 -0.24 0.24

75

DK 0.87 0.09 0.87 0.12 0.03 0.03 0.03 0.04
DKi 0.97 0.18 0.96 0.24 -0.07 -0.06 -0.08 -0.07
DKd 0.85 0.13 0.85 0.17 0.05 0.05 0.05 0.06
SW 1.00 1.43 0.77 1.09 -0.10 0.13 -0.11 0.14

Note: Gruber Saez estimator as given in equation (11) with Weber instrumentation (k = 2). 1,000
replications with 10,000 individual observations over 12 years each, facing the tax environment in
column 3. Tax environments: DK Danish tax variability with Swedish tax rate means, DKi same
tax rates, ordered with increasing spread, DKd decreasing spread, SW simplified tax system Ume̊a,
Sweden. See table (17) and part 3 for details.
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Table 4. Selected statistics of the simulated distribution of
Gruber Saez estimator with Weber instrumentation (k=3),
AR(1)

eti results bias relative bias

ETI FE TE mean sd p50 iqr mean p50 mean p50

30

25

DK 0.23 0.15 0.23 0.20 0.07 0.07 0.22 0.23
DKi 0.35 0.38 0.33 0.49 -0.05 -0.03 -0.15 -0.09
DKd 0.25 0.28 0.26 0.39 0.05 0.04 0.15 0.15
SW -0.68 44.03 -1.02 5.64 0.98 1.32 3.28 4.41

50

DK 0.27 0.14 0.26 0.18 0.03 0.04 0.11 0.13
DKi 0.34 0.34 0.33 0.44 -0.04 -0.03 -0.15 -0.11
DKd 0.28 0.25 0.26 0.32 0.02 0.04 0.08 0.12
SW -2.07 28.15 -0.51 3.79 2.37 0.81 7.89 2.69

75

DK 0.28 0.11 0.28 0.15 0.02 0.02 0.05 0.05
DKi 0.33 0.24 0.31 0.34 -0.03 -0.01 -0.09 -0.02
DKd 0.28 0.16 0.29 0.21 0.02 0.01 0.05 0.04
SW -1.21 63.40 -0.02 2.20 1.51 0.32 5.03 1.06

60

25

DK 0.49 0.13 0.48 0.18 0.11 0.12 0.19 0.20
DKi 0.65 0.31 0.64 0.41 -0.05 -0.04 -0.09 -0.07
DKd 0.52 0.22 0.51 0.31 0.08 0.09 0.13 0.15
SW -5.65 144.55 -0.80 6.08 6.25 1.40 10.42 2.34

50

DK 0.54 0.13 0.54 0.17 0.06 0.06 0.10 0.10
DKi 0.63 0.27 0.61 0.35 -0.03 -0.01 -0.05 -0.02
DKd 0.55 0.19 0.54 0.26 0.05 0.06 0.09 0.11
SW -0.85 35.60 -0.23 4.46 1.45 0.83 2.42 1.39

75

DK 0.58 0.10 0.58 0.13 0.02 0.02 0.04 0.03
DKi 0.63 0.21 0.63 0.27 -0.03 -0.03 -0.05 -0.04
DKd 0.58 0.14 0.58 0.18 0.02 0.02 0.03 0.04
SW 0.15 27.03 0.17 2.23 0.45 0.43 0.76 0.71

90

25

DK 0.73 0.11 0.73 0.15 0.17 0.17 0.18 0.19
DKi 0.98 0.24 0.99 0.32 -0.08 -0.09 -0.09 -0.10
DKd 0.76 0.18 0.76 0.25 0.14 0.14 0.15 0.16
SW 5.98 236.19 -0.73 7.35 -5.08 1.63 -5.64 1.81

50

DK 0.82 0.12 0.82 0.15 0.08 0.08 0.09 0.09
DKi 0.95 0.23 0.94 0.28 -0.05 -0.04 -0.05 -0.04
DKd 0.83 0.17 0.83 0.23 0.07 0.07 0.07 0.08
SW 0.63 69.69 -0.30 4.36 0.27 1.20 0.30 1.33

75

DK 0.87 0.09 0.86 0.12 0.03 0.04 0.04 0.04
DKi 0.93 0.18 0.93 0.26 -0.03 -0.03 -0.04 -0.03
DKd 0.87 0.13 0.87 0.17 0.03 0.03 0.03 0.03
SW 1.64 25.71 0.29 2.48 -0.74 0.61 -0.83 0.68

Note: Gruber Saez estimator as given in equation (11) with Weber instrumentation (k = 3). 1,000
replications with 10,000 individual observations over 12 years each, facing the tax environment in
column 3. Tax environments: DK Danish tax variability with Swedish tax rate means, DKi same
tax rates, ordered with increasing spread, DKd decreasing spread, SW simplified tax system Ume̊a,
Sweden. See table (17) and part 3 for details.
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Table 5. Selected statistics of the simulated distribution of
Gruber Saez estimator with base-year instrumentation (k=0),
MA(1)

eti results bias relative bias

ETI FE TE mean sd p50 iqr mean p50 mean p50

30

25

DK 0.10 0.04 0.10 0.05 0.20 0.20 0.67 0.67
DKi 0.08 0.07 0.08 0.10 0.22 0.22 0.73 0.73
DKd 0.07 0.03 0.07 0.04 0.23 0.23 0.77 0.77
SW 0.04 0.05 0.04 0.07 0.26 0.26 0.85 0.85

50

DK 0.11 0.03 0.11 0.05 0.19 0.19 0.64 0.64
DKi 0.08 0.07 0.08 0.10 0.22 0.22 0.74 0.74
DKd 0.08 0.03 0.08 0.04 0.22 0.22 0.74 0.74
SW 0.05 0.05 0.05 0.07 0.25 0.25 0.84 0.85

75

DK 0.12 0.03 0.12 0.04 0.18 0.18 0.61 0.61
DKi 0.08 0.05 0.08 0.07 0.22 0.22 0.73 0.74
DKd 0.09 0.03 0.09 0.03 0.21 0.21 0.70 0.70
SW 0.06 0.04 0.06 0.06 0.24 0.24 0.81 0.81

60

25

DK 0.17 0.03 0.17 0.05 0.43 0.43 0.72 0.72
DKi 0.14 0.05 0.14 0.08 0.46 0.46 0.77 0.77
DKd 0.11 0.03 0.11 0.04 0.49 0.49 0.81 0.81
SW 0.07 0.05 0.07 0.06 0.53 0.53 0.88 0.88

50

DK 0.18 0.03 0.18 0.04 0.42 0.42 0.69 0.69
DKi 0.14 0.05 0.13 0.07 0.46 0.47 0.77 0.78
DKd 0.13 0.03 0.13 0.03 0.47 0.47 0.79 0.79
SW 0.08 0.04 0.08 0.06 0.52 0.52 0.86 0.87

75

DK 0.20 0.03 0.20 0.04 0.40 0.40 0.67 0.66
DKi 0.14 0.04 0.14 0.06 0.46 0.46 0.77 0.77
DKd 0.14 0.02 0.14 0.03 0.46 0.46 0.77 0.77
SW 0.09 0.04 0.09 0.05 0.51 0.51 0.85 0.85

90

25

DK 0.25 0.03 0.25 0.05 0.65 0.65 0.72 0.72
DKi 0.20 0.05 0.20 0.07 0.70 0.70 0.78 0.78
DKd 0.15 0.03 0.15 0.04 0.75 0.75 0.83 0.83
SW 0.10 0.04 0.10 0.06 0.80 0.80 0.89 0.89

50

DK 0.27 0.03 0.27 0.04 0.63 0.63 0.70 0.70
DKi 0.21 0.05 0.21 0.06 0.69 0.69 0.77 0.77
DKd 0.17 0.03 0.17 0.04 0.73 0.73 0.81 0.81
SW 0.12 0.04 0.12 0.05 0.78 0.78 0.87 0.87

75

DK 0.29 0.03 0.29 0.04 0.61 0.61 0.68 0.68
DKi 0.22 0.04 0.22 0.05 0.68 0.68 0.76 0.76
DKd 0.18 0.02 0.18 0.03 0.72 0.72 0.80 0.80
SW 0.13 0.03 0.13 0.04 0.77 0.77 0.86 0.86

Note: Gruber Saez estimator as given in equation (11) with base-year instrumentation (k = 0).
1,000 replications with 10,000 individual observations over 12 years each, facing the tax environment
in column 3. Tax environments: DK Danish tax variability with Swedish tax rate means, DKi same
tax rates, ordered with increasing spread, DKd decreasing spread, SW simplified tax system Ume̊a,
Sweden. See table (17) and part 3 for details.
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Table 6. Selected statistics of the simulated distribution of
Gruber Saez estimator with Weber instrumentation (k=1),
MA(1)

eti results bias relative bias

ETI FE TE mean sd p50 iqr mean p50 mean p50

30

25

DK 0.27 0.14 0.27 0.18 0.03 0.03 0.11 0.12
DKi 0.32 0.43 0.32 0.57 -0.02 -0.02 -0.06 -0.06
DKd 0.11 0.24 0.10 0.31 0.19 0.20 0.64 0.68
SW 0.45 4.39 0.12 2.53 -0.15 0.18 -0.50 0.62

50

DK 0.27 0.12 0.26 0.16 0.03 0.04 0.11 0.12
DKi 0.34 0.42 0.31 0.56 -0.04 -0.01 -0.13 -0.02
DKd 0.16 0.19 0.16 0.25 0.14 0.14 0.47 0.47
SW 0.50 12.07 0.18 1.68 -0.20 0.12 -0.66 0.40

75

DK 0.28 0.09 0.28 0.12 0.02 0.02 0.07 0.08
DKi 0.35 0.32 0.34 0.42 -0.05 -0.04 -0.18 -0.13
DKd 0.22 0.13 0.21 0.17 0.08 0.09 0.27 0.29
SW 0.43 1.35 0.23 1.16 -0.13 0.07 -0.42 0.24

60

25

DK 0.57 0.13 0.57 0.17 0.03 0.03 0.06 0.05
DKi 0.51 0.34 0.50 0.44 0.09 0.10 0.15 0.16
DKd 0.23 0.23 0.23 0.32 0.37 0.37 0.62 0.62
SW 0.22 2.29 0.13 1.91 0.38 0.47 0.64 0.78

50

DK 0.56 0.12 0.56 0.15 0.04 0.04 0.07 0.07
DKi 0.56 0.31 0.55 0.40 0.04 0.05 0.07 0.08
DKd 0.33 0.20 0.32 0.26 0.27 0.28 0.46 0.47
SW 0.37 1.32 0.17 1.42 0.23 0.43 0.38 0.72

75

DK 0.57 0.09 0.56 0.12 0.03 0.04 0.06 0.06
DKi 0.63 0.25 0.62 0.34 -0.03 -0.02 -0.04 -0.03
DKd 0.45 0.15 0.45 0.20 0.15 0.15 0.25 0.25
SW 0.56 1.02 0.42 1.00 0.04 0.18 0.06 0.30

90

25

DK 0.87 0.12 0.87 0.16 0.03 0.03 0.03 0.03
DKi 0.68 0.27 0.67 0.36 0.22 0.23 0.24 0.26
DKd 0.34 0.23 0.34 0.31 0.56 0.56 0.62 0.62
SW 0.19 1.43 0.12 1.78 0.71 0.78 0.78 0.87

50

DK 0.87 0.11 0.87 0.15 0.03 0.03 0.04 0.03
DKi 0.77 0.26 0.76 0.35 0.13 0.14 0.14 0.15
DKd 0.51 0.20 0.51 0.26 0.39 0.39 0.43 0.43
SW 0.47 1.14 0.39 1.36 0.43 0.51 0.48 0.57

75

DK 0.87 0.09 0.87 0.11 0.03 0.03 0.03 0.03
DKi 0.86 0.22 0.86 0.28 0.04 0.04 0.04 0.04
DKd 0.69 0.15 0.69 0.20 0.21 0.21 0.23 0.23
SW 0.62 0.75 0.54 0.84 0.28 0.36 0.31 0.40

Note: Gruber Saez estimator as given in equation (11) with Weber instrumentation (k = 1). 1,000
replications with 10,000 individual observations over 12 years each, facing the tax environment in
column 3. Tax environments: DK Danish tax variability with Swedish tax rate means, DKi same
tax rates, ordered with increasing spread, DKd decreasing spread, SW simplified tax system Ume̊a,
Sweden. See table (17) and part 3 for details.
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Table 7. Selected statistics of the simulated distribution of
Gruber Saez estimator with Weber instrumentation (k=2),
MA(1)

eti results bias relative bias

ETI FE TE mean sd p50 iqr mean p50 mean p50

30

25

DK 0.30 0.21 0.30 0.27 0.00 0.00 0.00 0.02
DKi 0.34 0.46 0.33 0.65 -0.04 -0.03 -0.15 -0.11
DKd 0.29 0.49 0.26 0.64 0.01 0.04 0.04 0.15
SW -1.66 49.35 -0.12 5.09 1.96 0.42 6.54 1.41

50

DK 0.30 0.19 0.29 0.26 0.00 0.01 -0.01 0.03
DKi 0.33 0.42 0.31 0.56 -0.03 -0.01 -0.11 -0.05
DKd 0.30 0.40 0.29 0.54 0.00 0.01 0.00 0.04
SW 11.54 273.14 -0.01 4.24 -11.24 0.31 -37.48 1.05

75

DK 0.31 0.15 0.30 0.20 -0.01 0.00 -0.03 -0.01
DKi 0.34 0.28 0.31 0.40 -0.04 -0.01 -0.12 -0.03
DKd 0.31 0.26 0.30 0.36 -0.01 0.00 -0.05 0.00
SW -0.11 30.31 0.29 2.62 0.41 0.01 1.36 0.05

60

25

DK 0.61 0.19 0.60 0.26 -0.01 0.00 -0.01 0.00
DKi 0.63 0.39 0.62 0.51 -0.03 -0.02 -0.04 -0.03
DKd 0.61 0.37 0.61 0.49 -0.01 -0.01 -0.01 -0.02
SW 0.71 34.70 0.27 5.07 -0.11 0.33 -0.19 0.55

50

DK 0.61 0.17 0.60 0.21 -0.01 0.00 -0.01 -0.01
DKi 0.62 0.34 0.60 0.45 -0.02 0.00 -0.03 -0.01
DKd 0.61 0.33 0.59 0.44 -0.01 0.01 -0.02 0.01
SW 12.48 340.61 -0.12 3.82 -11.88 0.72 -19.81 1.20

75

DK 0.61 0.13 0.60 0.17 -0.01 0.00 -0.01 0.00
DKi 0.62 0.25 0.61 0.34 -0.02 -0.01 -0.03 -0.01
DKd 0.61 0.23 0.61 0.30 -0.01 -0.01 -0.02 -0.01
SW 1.97 41.28 0.35 2.63 -1.37 0.25 -2.28 0.42

90

25

DK 0.91 0.17 0.91 0.23 -0.01 -0.01 -0.01 -0.01
DKi 0.94 0.32 0.93 0.43 -0.04 -0.03 -0.04 -0.03
DKd 0.92 0.32 0.92 0.45 -0.02 -0.02 -0.02 -0.03
SW -7.95 237.33 0.64 4.71 8.85 0.26 9.83 0.29

50

DK 0.91 0.16 0.90 0.21 -0.01 0.00 -0.01 0.00
DKi 0.93 0.28 0.92 0.36 -0.03 -0.02 -0.03 -0.02
DKd 0.92 0.27 0.90 0.37 -0.02 0.00 -0.02 0.00
SW 1.58 38.86 0.73 4.35 -0.68 0.17 -0.76 0.18

75

DK 0.90 0.12 0.90 0.16 0.00 0.00 0.00 0.00
DKi 0.94 0.23 0.92 0.30 -0.04 -0.02 -0.04 -0.02
DKd 0.91 0.20 0.90 0.26 -0.01 0.00 -0.01 0.00
SW 3.02 64.01 0.68 2.57 -2.12 0.22 -2.35 0.24

Note: Gruber Saez estimator as given in equation (11) with Weber instrumentation (k = 2). 1,000
replications with 10,000 individual observations over 12 years each, facing the tax environment in
column 3. Tax environments: DK Danish tax variability with Swedish tax rate means, DKi same
tax rates, ordered with increasing spread, DKd decreasing spread, SW simplified tax system Ume̊a,
Sweden. See table (17) and part 3 for details.
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Table 8. Selected statistics of the simulated distribution of
Gruber Saez estimator with Weber instrumentation (k=3),
MA(1)

eti results bias relative bias

ETI FE TE mean sd p50 iqr mean p50 mean p50

30

25

DK 0.30 0.22 0.30 0.29 0.00 0.00 -0.01 -0.01
DKi 0.34 0.49 0.34 0.61 -0.04 -0.04 -0.13 -0.12
DKd 0.32 0.46 0.29 0.57 -0.02 0.01 -0.05 0.04
SW -10.98 248.47 -2.07 8.67 11.28 2.37 37.60 7.91

50

DK 0.31 0.20 0.30 0.25 -0.01 0.00 -0.02 -0.01
DKi 0.32 0.44 0.30 0.57 -0.02 0.00 -0.07 0.00
DKd 0.32 0.38 0.30 0.52 -0.02 0.00 -0.06 0.02
SW 0.53 131.86 -1.71 6.36 -0.23 2.01 -0.76 6.71

75

DK 0.31 0.14 0.31 0.19 -0.01 -0.01 -0.03 -0.03
DKi 0.32 0.30 0.30 0.39 -0.02 0.00 -0.08 0.00
DKd 0.32 0.25 0.30 0.34 -0.02 0.00 -0.05 -0.01
SW -1.48 23.82 -0.73 4.10 1.78 1.03 5.94 3.44

60

25

DK 0.60 0.19 0.61 0.25 0.00 -0.01 -0.01 -0.01
DKi 0.62 0.41 0.60 0.52 -0.02 0.00 -0.03 0.00
DKd 0.61 0.34 0.61 0.43 -0.01 -0.01 -0.02 -0.02
SW -9.67 266.28 -2.02 10.80 10.27 2.62 17.12 4.37

50

DK 0.61 0.17 0.60 0.24 -0.01 0.00 -0.01 0.00
DKi 0.64 0.36 0.60 0.47 -0.04 0.00 -0.06 0.00
DKd 0.61 0.29 0.61 0.37 -0.01 -0.01 -0.02 -0.02
SW -33.76 701.93 -1.50 8.43 34.36 2.10 57.27 3.50

75

DK 0.60 0.13 0.60 0.17 0.00 0.00 0.00 0.00
DKi 0.62 0.26 0.61 0.34 -0.02 -0.01 -0.03 -0.02
DKd 0.61 0.20 0.60 0.26 -0.01 0.00 -0.01 -0.01
SW -1.81 31.79 -0.75 4.27 2.41 1.35 4.02 2.25

90

25

DK 0.91 0.17 0.91 0.23 -0.01 -0.01 -0.01 -0.01
DKi 0.92 0.33 0.91 0.43 -0.02 -0.01 -0.02 -0.01
DKd 0.91 0.26 0.91 0.36 -0.01 -0.01 -0.01 -0.01
SW 3.77 456.28 -2.53 11.68 -2.87 3.43 -3.19 3.81

50

DK 0.91 0.16 0.91 0.23 -0.01 -0.01 -0.01 -0.01
DKi 0.93 0.29 0.93 0.40 -0.03 -0.03 -0.04 -0.03
DKd 0.92 0.23 0.92 0.30 -0.02 -0.02 -0.02 -0.02
SW 0.20 169.16 -1.50 9.08 0.70 2.40 0.77 2.67

75

DK 0.90 0.12 0.90 0.15 0.00 0.00 0.00 0.00
DKi 0.93 0.23 0.93 0.30 -0.03 -0.03 -0.03 -0.03
DKd 0.91 0.17 0.91 0.24 -0.01 -0.01 -0.02 -0.01
SW 1.24 89.41 -0.54 4.57 -0.34 1.44 -0.38 1.60

Note: Gruber Saez estimator as given in equation (11) with Weber instrumentation (k = 3). 1,000
replications with 10,000 individual observations over 12 years each, facing the tax environment in
column 3. Tax environments: DK Danish tax variability with Swedish tax rate means, DKi same
tax rates, ordered with increasing spread, DKd decreasing spread, SW simplified tax system Ume̊a,
Sweden. See table (17) and part 3 for details.
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Figure 6. Effect of tax environment bunching estimator

small kink (10 percentage points)
large kink (20 percentage

points)

Note: Saez and lognormal bunching estimators as described in appendix ??. 1,000 repli-
cations with 10,000 individual observations over 12 years each, facing the tax environment
in column 3. Tax environments: small kink: ntr0 = 0.65, ntr1 = 0.55, dif = 0.1; large
kink: ntr0 = 0.65, ntr1 = 0.45, dif = 0.2. See table (17) and part (3) for details. Estima-
tors: ETISaez0: original Saez estimator;ETInorm: our prefered ML based ETI bunching
estimator (equation 19 in appendix ??). See Table (10) for precise figures
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Table 9. Selected statistics of the simulated distribution of
the Bunching Estimator (ETI = 0.3)

mean sd p50 iqr relative bias observation numbers

mean median bk k ak total

large kink

2002 ML 0.301 0.020 0.300 0.026 -0.004 -0.002 588 414 400 1401
2002 Saez 0.301 0.045 0.297 0.058 -0.004 0.010 39 444 29 512
2003 ML 0.300 0.019 0.300 0.027 0.001 0.001 548 394 395 1336
2003 Saez 0.302 0.049 0.298 0.066 -0.007 0.008 36 423 29 488
2004 ML 0.300 0.020 0.300 0.028 -0.001 -0.001 531 379 376 1286
2004 Saez 0.300 0.049 0.295 0.060 -0.001 0.015 35 408 28 471
2005 ML 0.300 0.020 0.300 0.026 -0.001 0.001 515 365 360 1240
2005 Saez 0.303 0.051 0.298 0.069 -0.009 0.008 34 392 26 452
2006 ML 0.300 0.021 0.300 0.028 -0.002 -0.001 497 351 345 1192
2006 Saez 0.304 0.050 0.301 0.068 -0.013 -0.002 33 377 25 434
2007 ML 0.300 0.021 0.300 0.029 -0.001 0.001 474 330 321 1125
2007 Saez 0.304 0.052 0.298 0.070 -0.014 0.005 31 355 23 409
2008 ML 0.301 0.022 0.300 0.030 -0.002 0.000 449 310 297 1056
2008 Saez 0.300 0.054 0.294 0.071 -0.001 0.021 30 333 22 384
2009 ML 0.302 0.025 0.302 0.034 -0.007 -0.006 374 250 234 858
2009 Saez 0.303 0.064 0.296 0.082 -0.011 0.012 24 269 18 310
2010 ML 0.304 0.025 0.303 0.034 -0.013 -0.010 364 244 226 835
2010 Saez 0.303 0.062 0.296 0.079 -0.012 0.012 23 262 17 302
2011 ML 0.303 0.027 0.302 0.034 -0.008 -0.007 347 229 212 788
2011 Saez 0.304 0.067 0.294 0.083 -0.013 0.019 22 246 16 284
2012 ML 0.310 0.030 0.308 0.041 -0.032 -0.026 317 208 189 714
2012 Saez 0.302 0.071 0.291 0.082 -0.005 0.031 20 223 14 258

small kink

2002 ML 0.301 0.027 0.301 0.037 -0.005 -0.003 588 217 449 1254
2002 Saez 0.304 0.058 0.300 0.074 -0.015 0.000 39 252 33 323
2003 ML 0.300 0.028 0.299 0.038 0.000 0.005 548 206 437 1191
2003 Saez 0.305 0.061 0.300 0.083 -0.016 0.000 36 238 32 306
2004 ML 0.301 0.028 0.302 0.037 -0.003 -0.006 531 198 418 1148
2004 Saez 0.305 0.061 0.299 0.074 -0.018 0.004 35 230 30 296
2005 ML 0.300 0.028 0.301 0.036 -0.001 -0.002 515 191 401 1107
2005 Saez 0.305 0.063 0.298 0.085 -0.017 0.005 34 221 29 284
2006 ML 0.301 0.029 0.301 0.040 -0.004 -0.004 497 184 385 1065
2006 Saez 0.309 0.063 0.304 0.085 -0.031 -0.014 33 213 28 273
2007 ML 0.301 0.030 0.301 0.043 -0.003 -0.003 474 174 361 1008
2007 Saez 0.308 0.067 0.301 0.086 -0.028 -0.004 31 201 26 258
2008 ML 0.301 0.031 0.299 0.043 -0.004 0.002 449 163 336 948
2008 Saez 0.304 0.069 0.297 0.087 -0.012 0.011 30 188 25 243
2009 ML 0.306 0.036 0.305 0.050 -0.019 -0.017 374 133 267 774
2009 Saez 0.310 0.078 0.301 0.096 -0.032 -0.003 24 154 20 198
2010 ML 0.305 0.035 0.305 0.049 -0.018 -0.018 364 130 260 754
2010 Saez 0.306 0.077 0.298 0.099 -0.021 0.006 23 150 20 193
2011 ML 0.307 0.036 0.307 0.049 -0.022 -0.023 347 122 243 712
2011 Saez 0.307 0.075 0.299 0.096 -0.023 0.004 22 141 18 181
2012 ML 0.313 0.039 0.311 0.053 -0.042 -0.035 317 111 219 647
2012 Saez 0.307 0.084 0.302 0.106 -0.025 -0.005 20 128 16 165

Note: Saez and lognormal ML bunching estimators as described in part 4 and Aronsson
et al., (2018). 1,000 replications with 10,000 individual observations over 12 years each,
facing the tax environment in column 3. Tax environments: small kink: ntr0 = 0.65,
ntr1 = 0.55, dif = 0.1; large kink: ntr0 = 0.65, ntr1 = 0.45, dif = 0.2. See table (17)
and part 3 for details. Estimators: Saez: original Saez estimator as in Equation (17);
ML: ML based ETI bunching estimator assuming lognormal income distribution as in
Equation (19).
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Table 10. Selected statistics of the simulated distribution of
the Bunching Estimator (ETI = 0.6)

mean sd p50 iqr relative bias observation numbers

mean median bk k ak total

large kink

2002 ML 0.619 0.048 0.616 0.059 -0.032 -0.026 482 557 231 1271
2002 Saez 0.583 0.096 0.570 0.122 0.029 0.049 31 576 18 624
2003 ML 0.618 0.046 0.612 0.060 -0.030 -0.019 459 556 242 1256
2003 Saez 0.589 0.098 0.579 0.126 0.019 0.035 30 574 18 622
2004 ML 0.615 0.045 0.611 0.059 -0.025 -0.018 442 528 229 1200
2004 Saez 0.581 0.096 0.570 0.126 0.032 0.051 29 547 17 593
2005 ML 0.616 0.047 0.611 0.059 -0.027 -0.019 425 505 217 1147
2005 Saez 0.588 0.107 0.573 0.134 0.019 0.044 28 522 16 566
2006 ML 0.617 0.045 0.614 0.057 -0.028 -0.023 409 482 204 1095
2006 Saez 0.585 0.103 0.577 0.133 0.025 0.039 27 498 15 540
2007 ML 0.616 0.049 0.611 0.061 -0.026 -0.019 385 448 188 1021
2007 Saez 0.583 0.110 0.572 0.140 0.028 0.047 25 463 14 502
2008 ML 0.615 0.049 0.612 0.063 -0.025 -0.020 361 413 171 946
2008 Saez 0.579 0.110 0.567 0.141 0.034 0.054 23 427 13 463
2009 ML 0.643 0.065 0.645 0.078 -0.071 -0.075 293 322 127 741
2009 Saez 0.576 0.121 0.561 0.154 0.040 0.065 19 332 10 360
2010 ML 0.641 0.066 0.643 0.088 -0.069 -0.072 285 311 123 719
2010 Saez 0.587 0.130 0.568 0.157 0.022 0.053 18 321 9 349
2011 ML 0.643 0.070 0.644 0.088 -0.072 -0.073 268 291 113 672
2011 Saez 0.584 0.132 0.563 0.167 0.027 0.061 17 300 9 326
2012 ML 0.633 0.072 0.639 0.095 -0.054 -0.066 243 258 99 600
2012 Saez 0.584 0.138 0.561 0.161 0.027 0.065 15 266 8 289

small kink

2002 ML 0.601 0.046 0.601 0.064 -0.001 -0.002 482 300 310 1092
2002 Saez 0.604 0.109 0.592 0.137 -0.007 0.013 31 324 23 378
2003 ML 0.605 0.046 0.604 0.062 -0.008 -0.007 459 296 314 1069
2003 Saez 0.613 0.116 0.602 0.147 -0.021 -0.003 30 320 23 373
2004 ML 0.602 0.048 0.599 0.065 -0.003 0.001 442 282 299 1022
2004 Saez 0.604 0.117 0.588 0.137 -0.007 0.020 29 304 22 355
2005 ML 0.602 0.047 0.602 0.064 -0.004 -0.003 425 270 284 979
2005 Saez 0.607 0.116 0.599 0.158 -0.011 0.002 28 292 21 340
2006 ML 0.603 0.047 0.603 0.062 -0.006 -0.005 409 258 270 936
2006 Saez 0.603 0.115 0.594 0.155 -0.004 0.011 27 279 20 326
2007 ML 0.604 0.052 0.603 0.070 -0.007 -0.005 385 241 250 876
2007 Saez 0.610 0.124 0.595 0.167 -0.017 0.008 25 260 19 304
2008 ML 0.607 0.054 0.605 0.070 -0.011 -0.008 361 223 229 814
2008 Saez 0.607 0.127 0.595 0.173 -0.012 0.008 23 241 17 282
2009 ML 0.626 0.065 0.623 0.088 -0.044 -0.038 293 175 176 643
2009 Saez 0.602 0.141 0.588 0.188 -0.004 0.019 19 190 13 222
2010 ML 0.628 0.064 0.626 0.089 -0.047 -0.043 285 170 169 625
2010 Saez 0.616 0.148 0.595 0.185 -0.026 0.009 18 184 13 214
2011 ML 0.634 0.070 0.629 0.095 -0.056 -0.049 268 160 157 585
2011 Saez 0.610 0.149 0.593 0.193 -0.017 0.011 17 172 12 201
2012 ML 0.637 0.073 0.633 0.097 -0.062 -0.054 243 143 139 524
2012 Saez 0.614 0.157 0.590 0.206 -0.023 0.017 15 154 11 180

Note: Saez and lognormal ML bunching estimators as described in part 4 and Aronsson
et al., (2018). 1,000 replications with 10,000 individual observations over 12 years each,
facing the tax environment in column 3. Tax environments: small kink: ntr0 = 0.65,
ntr1 = 0.55, dif = 0.1; large kink: ntr0 = 0.65, ntr1 = 0.45, dif = 0.2. See table (17)
and part 3 for details. Estimators: Saez: original Saez estimator as in Equation (17);
ML: ML based ETI bunching estimator assuming lognormal income distribution as in
Equation (19).
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Table 11. Selected statistics of the simulated distribution of
the Bunching Estimator (ETI = 0.9)

mean sd p50 iqr relative bias observation numbers

mean median bk k ak total

large kink

2002 ML 0.960 0.060 0.955 0.082 -0.066 -0.061 378 542 116 1036
2002 Saez 0.809 0.150 0.790 0.186 0.101 0.122 24 552 9 585
2003 ML 0.920 0.054 0.915 0.071 -0.022 -0.017 373 565 134 1072
2003 Saez 0.827 0.153 0.806 0.185 0.081 0.104 24 576 10 610
2004 ML 0.936 0.067 0.930 0.089 -0.040 -0.033 355 534 124 1014
2004 Saez 0.832 0.157 0.814 0.203 0.076 0.096 23 544 10 576
2005 ML 0.957 0.071 0.949 0.095 -0.063 -0.055 340 506 116 963
2005 Saez 0.816 0.151 0.799 0.202 0.093 0.113 22 515 9 546
2006 ML 0.977 0.072 0.972 0.094 -0.085 -0.080 326 479 108 913
2006 Saez 0.813 0.163 0.791 0.210 0.097 0.121 21 488 8 517
2007 ML 0.984 0.074 0.982 0.091 -0.094 -0.091 304 441 98 843
2007 Saez 0.824 0.163 0.802 0.200 0.084 0.109 19 449 7 476
2008 ML 0.981 0.081 0.975 0.107 -0.090 -0.084 282 401 88 770
2008 Saez 0.819 0.174 0.789 0.205 0.090 0.123 18 408 7 433
2009 ML 1.001 0.113 0.998 0.153 -0.113 -0.109 222 300 62 584
2009 Saez 0.814 0.207 0.778 0.249 0.096 0.136 14 305 5 324
2010 ML 1.007 0.118 1.000 0.156 -0.119 -0.111 214 290 59 564
2010 Saez 0.823 0.217 0.779 0.258 0.086 0.134 13 295 5 313
2011 ML 1.001 0.123 0.994 0.155 -0.112 -0.104 201 268 54 522
2011 Saez 0.809 0.221 0.770 0.253 0.101 0.144 12 272 4 289
2012 ML 0.989 0.142 0.983 0.184 -0.099 -0.092 180 234 46 460
2012 Saez 0.808 0.230 0.767 0.268 0.103 0.148 11 238 4 253

small kink

2002 ML 0.924 0.072 0.921 0.094 -0.027 -0.023 378 314 198 889
2002 Saez 0.894 0.172 0.872 0.219 0.006 0.031 24 329 15 369
2003 ML 0.908 0.068 0.905 0.097 -0.009 -0.006 373 320 212 904
2003 Saez 0.900 0.180 0.872 0.212 -0.001 0.031 24 336 16 376
2004 ML 0.921 0.077 0.915 0.096 -0.023 -0.017 355 304 199 858
2004 Saez 0.909 0.171 0.892 0.222 -0.010 0.009 23 319 15 357
2005 ML 0.933 0.081 0.932 0.111 -0.037 -0.035 340 288 188 816
2005 Saez 0.898 0.185 0.873 0.233 0.002 0.030 22 303 14 339
2006 ML 0.939 0.081 0.939 0.107 -0.044 -0.043 326 273 177 776
2006 Saez 0.886 0.193 0.863 0.238 0.015 0.041 21 287 14 322
2007 ML 0.950 0.089 0.944 0.128 -0.056 -0.049 304 253 162 719
2007 Saez 0.903 0.197 0.880 0.245 -0.004 0.022 19 266 12 298
2008 ML 0.955 0.094 0.949 0.128 -0.061 -0.054 282 232 147 660
2008 Saez 0.907 0.214 0.873 0.243 -0.008 0.030 18 243 11 272
2009 ML 0.973 0.111 0.968 0.148 -0.081 -0.075 222 176 107 505
2009 Saez 0.906 0.247 0.868 0.285 -0.006 0.036 14 185 8 207
2010 ML 0.974 0.108 0.967 0.147 -0.083 -0.075 214 171 103 488
2010 Saez 0.920 0.253 0.867 0.281 -0.022 0.036 13 179 8 200
2011 ML 0.967 0.115 0.956 0.149 -0.074 -0.062 201 158 95 454
2011 Saez 0.899 0.262 0.862 0.317 0.001 0.043 12 165 8 185
2012 ML 0.964 0.120 0.956 0.151 -0.071 -0.063 180 139 83 401
2012 Saez 0.917 0.281 0.872 0.334 -0.019 0.031 11 146 6 163

Note: Saez and lognormal ML bunching estimators as described in part 4 and Aronsson
et al., (2018). 1,000 replications with 10,000 individual observations over 12 years each,
facing the tax environment in column 3. Tax environments: small kink: ntr0 = 0.65,
ntr1 = 0.55, dif = 0.1; large kink: ntr0 = 0.65, ntr1 = 0.45, dif = 0.2. See table (17)
and part 3 for details. Estimators: Saez: original Saez estimator as in Equation (17);
ML: ML based ETI bunching estimator assuming lognormal income distribution as in
Equation (19).
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Figure 7. Effect of tax environment indirect inference esti-
mator MA

Note: Indirect inference estimator as described in part (4). 1,000 replications with 10,000
individual observations over 12 years each, facing the tax environment given in graph note.
Tax environments: DK Danish tax variability with Swedish tax rate means, DKi same tax
rates, ordered with increasing spread, DKd decreasing spread, SW simplified tax system
Ume̊a, Sweden. See Table (17) and Section (3) for details. See Table (13) for precise
figures.



THE QUALITY OF THE ESTIMATORS OF THE ETI 45

Table 12. Selected statistics of the simulated distribution of
the Indirect Inference estimator, AR(1)

ETI results relative bias

eti FE% tax environment mean sd p50 iqr mean p50 converged reps

30

25

DK 0.300 0.008 0.300 0.010 0.001 0.001 988 1000
DKi 0.300 0.010 0.300 0.013 0.000 -0.001 983 1000
DKd 0.300 0.009 0.300 0.011 0.001 0.001 991 1000
SW 0.300 0.008 0.300 0.011 0.001 0.000 987 1000

50

DK 0.300 0.008 0.300 0.011 0.000 0.000 991 1000
DKi 0.300 0.010 0.300 0.014 0.000 -0.001 991 1000
DKd 0.300 0.009 0.300 0.012 0.000 -0.001 990 1000
SW 0.300 0.009 0.300 0.011 0.000 -0.001 988 1000

75

DK 0.300 0.009 0.300 0.012 0.000 -0.001 992 1000
DKi 0.300 0.010 0.300 0.015 0.001 -0.001 987 1000
DKd 0.300 0.009 0.300 0.013 0.000 0.000 993 1000
SW 0.300 0.009 0.300 0.013 0.000 -0.001 987 1000

60

25

DK 0.600 0.014 0.600 0.019 0.000 0.000 998 1000
DKi 0.600 0.016 0.600 0.020 0.000 0.000 997 1000
DKd 0.600 0.014 0.599 0.019 0.000 -0.001 998 1000
SW 0.600 0.014 0.600 0.018 0.000 -0.001 999 1000

50

DK 0.600 0.014 0.600 0.021 0.001 0.000 999 1000
DKi 0.600 0.016 0.600 0.022 0.001 0.000 997 1000
DKd 0.600 0.015 0.600 0.021 0.001 -0.001 995 1000
SW 0.600 0.014 0.600 0.019 0.001 0.000 992 1000

75

DK 0.600 0.017 0.599 0.022 0.000 -0.001 995 1000
DKi 0.599 0.018 0.599 0.024 -0.001 -0.001 995 1000
DKd 0.600 0.017 0.599 0.023 0.000 -0.002 993 1000
SW 0.600 0.017 0.600 0.023 0.000 0.000 991 1000

90

25

DK 0.900 0.022 0.899 0.029 0.000 -0.001 1000 1000
DKi 0.901 0.025 0.899 0.033 0.001 -0.001 999 1000
DKd 0.901 0.022 0.900 0.029 0.001 0.000 998 1000
SW 0.901 0.021 0.900 0.028 0.001 0.000 997 1000

50

DK 0.900 0.024 0.899 0.031 0.000 -0.001 999 1000
DKi 0.900 0.026 0.899 0.035 0.000 -0.001 995 1000
DKd 0.900 0.024 0.900 0.031 0.000 0.000 995 1000
SW 0.900 0.024 0.900 0.031 0.000 0.000 996 1000

75

DK 0.899 0.031 0.899 0.042 -0.001 -0.001 996 1000
DKi 0.900 0.031 0.900 0.041 0.000 0.000 992 1000
DKd 0.899 0.030 0.898 0.041 -0.001 -0.002 994 1000
SW 0.899 0.028 0.899 0.038 -0.001 -0.001 994 1000

Note: Indirect inference estimator as described in part (4). 1,000 replications with 10,000 individual
observations over 12 years each, facing the tax environment in column 3. Tax environments: DK
Danish tax variability with Swedish tax rate means, DKi same tax rates, ordered with increasing
spread, DKd decreasing spread, SW simplified tax system Ume̊a, Sweden. See table (17) and part
3 for details.
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Table 13. Selected statistics of the simulated distribution of
the Indirect Inference estimator, MA(1)

ETI results relative bias

eti FE% tax environment mean sd p50 iqr mean p50 converged reps

30

25

DK 0.300 0.008 0.300 0.011 -0.001 -0.001 988 1000
DKi 0.300 0.009 0.299 0.013 -0.001 -0.002 985 1000
DKd 0.300 0.008 0.300 0.011 -0.001 -0.001 988 1000
SW 0.300 0.008 0.300 0.010 -0.001 -0.001 988 1000

50

DK 0.300 0.008 0.300 0.010 0.000 0.000 992 1000
DKi 0.300 0.009 0.300 0.012 0.000 0.001 989 1000
DKd 0.300 0.008 0.300 0.011 0.001 0.001 991 1000
SW 0.300 0.008 0.300 0.011 0.000 0.001 991 1000

75

DK 0.300 0.008 0.300 0.011 -0.001 -0.001 990 1000
DKi 0.300 0.010 0.300 0.014 0.000 0.000 988 1000
DKd 0.299 0.009 0.299 0.012 -0.002 -0.002 991 1000
SW 0.300 0.009 0.300 0.012 -0.001 -0.001 987 1000

60

25

DK 0.600 0.014 0.600 0.018 0.000 0.000 998 1000
DKi 0.600 0.015 0.600 0.021 0.000 0.000 997 1000
DKd 0.600 0.014 0.600 0.019 0.000 0.000 998 1000
SW 0.600 0.013 0.600 0.018 0.000 -0.001 998 1000

50

DK 0.600 0.014 0.600 0.020 0.000 0.000 999 1000
DKi 0.600 0.016 0.600 0.021 0.001 0.000 997 1000
DKd 0.600 0.014 0.600 0.020 0.000 0.001 999 1000
SW 0.600 0.013 0.600 0.018 0.000 0.000 997 1000

75

DK 0.600 0.015 0.600 0.020 0.000 0.000 1000 1000
DKi 0.600 0.017 0.601 0.023 0.001 0.001 999 1000
DKd 0.600 0.016 0.600 0.022 0.000 0.000 1000 1000
SW 0.600 0.015 0.601 0.020 0.001 0.001 998 1000

90

25

DK 0.899 0.020 0.899 0.026 -0.001 -0.001 1000 1000
DKi 0.901 0.023 0.900 0.030 0.001 0.000 998 1000
DKd 0.899 0.021 0.899 0.028 -0.001 -0.001 1000 1000
SW 0.900 0.020 0.899 0.026 0.000 -0.001 999 1000

50

DK 0.900 0.022 0.899 0.029 -0.001 -0.001 1000 1000
DKi 0.900 0.024 0.900 0.033 0.000 0.000 1000 1000
DKd 0.900 0.022 0.901 0.030 0.000 0.001 1000 1000
SW 0.900 0.021 0.901 0.028 0.001 0.001 1000 1000

75

DK 0.900 0.027 0.900 0.037 0.000 -0.001 1000 1000
DKi 0.899 0.028 0.899 0.037 -0.001 -0.001 1000 1000
DKd 0.900 0.026 0.900 0.036 0.000 0.000 1000 1000
SW 0.900 0.025 0.899 0.035 0.000 -0.001 1000 1000

Note: Indirect inference estimator as described in part (4). 1,000 replications with 10,000 individual
observations over 12 years each, facing the tax environment in column 3. Tax environments: DK
Danish tax variability with Swedish tax rate means, DKi same tax rates, ordered with increasing
spread, DKd decreasing spread, SW simplified tax system Ume̊a, Sweden. See table (17) and part
3 for details.
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Table 14. Selected statistics of the simulated distribution of
Gruber Saez estimator with Weber instrumentation (k=3), ro-
bustness tests

eti results bias relative bias

error prop dist mean sd p50 iqr mean p50 mean p50

AR

50 n 0.526 0.139 0.531 0.194 0.074 0.069 0.124 0.116
75 n 0.531 0.132 0.533 0.185 0.069 0.067 0.116 0.111
100 s(5) 0.542 0.127 0.542 0.170 0.058 0.058 0.097 0.097
100 s(10) 0.537 0.125 0.532 0.163 0.063 0.068 0.106 0.113

MA

50 n 0.589 0.194 0.587 0.261 0.011 0.013 0.018 0.021
75 n 0.598 0.187 0.595 0.257 0.002 0.005 0.003 0.008
100 s(5) 0.607 0.169 0.609 0.236 -0.007 -0.009 -0.012 -0.015
100 s(10) 0.593 0.168 0.587 0.228 0.007 0.013 0.012 0.022

Note: Gruber Saez estimator as given in equation 11, with Weber instrumentation (k=3). 1,000
replications with 10,000 individual observations over 12 years each, facing the tax environment in
column 3. The ETI α is set to 0.6 for those tax units that respond, and to 0 for all other tax units.
The share of the variance attributed to the permanent effect φ is set to 0.5. Prop: proportion of tax
units that react to taxation. Dist: distribution of unobserved component; n ≡ log-normal; s(i) ≡
log-Student’s t-distribution with i degrees of freedom. Tax environment: DK Danish tax variability
with Swedish tax rate means. See table (17) and part (3) for details.
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Table 15. Selected statistics of the simulated distribution of
the Bunching Estimator (ETI = 0.6), robustness tests

prop dist mean sd p50 iqr relative bias observation numbers

mean median bk k ak total

large kink

2002

ML

50 n 0.276 0.021 0.275 0.028 0.540 0.541 474 298 306 1078
75 n 0.432 0.028 0.431 0.037 0.279 0.282 478 432 272 1183
100 s(5) 0.613 0.045 0.608 0.059 -0.021 -0.014 429 462 183 1074
100 s(10) 0.616 0.044 0.612 0.057 -0.026 -0.020 462 523 215 1200

Saez

50 n 0.275 0.049 0.269 0.061 0.542 0.552 31 322 23 375
75 n 0.424 0.069 0.418 0.088 0.293 0.304 31 453 21 505
100 s(5) 0.572 0.098 0.559 0.124 0.046 0.068 27 477 14 518
100 s(10) 0.582 0.104 0.568 0.125 0.031 0.053 29 540 16 586

2011

ML

50 n 0.279 0.032 0.277 0.043 0.535 0.538 266 154 156 575
75 n 0.449 0.044 0.448 0.056 0.251 0.254 267 222 135 624
100 s(5) 0.615 0.071 0.620 0.096 -0.025 -0.033 219 231 91 542
100 s(10) 0.636 0.071 0.641 0.096 -0.060 -0.068 248 267 104 619

Saez

50 n 0.272 0.068 0.262 0.095 0.547 0.563 17 166 12 195
75 n 0.423 0.098 0.410 0.130 0.295 0.317 17 233 10 260
100 s(5) 0.585 0.153 0.556 0.179 0.025 0.073 14 239 7 259
100 s(10) 0.587 0.134 0.572 0.169 0.022 0.047 15 275 8 298

small kink

2002

ML

50 n 0.291 0.030 0.289 0.042 0.516 0.518 478 167 350 995
75 n 0.444 0.038 0.443 0.050 0.260 0.262 481 236 333 1049
100 s(5) 0.605 0.049 0.603 0.066 -0.008 -0.004 429 253 251 933
100 s(10) 0.602 0.046 0.601 0.060 -0.004 -0.002 462 283 289 1034

Saez

50 n 0.295 0.067 0.289 0.089 0.508 0.519 31 193 26 250
75 n 0.447 0.087 0.440 0.109 0.254 0.266 31 261 25 317
100 s(5) 0.606 0.120 0.590 0.148 -0.009 0.017 27 273 19 319
100 s(10) 0.601 0.109 0.589 0.140 -0.002 0.019 29 306 22 358

2011

ML

50 n 0.298 0.042 0.297 0.055 0.504 0.505 267 88 179 534
75 n 0.457 0.054 0.457 0.073 0.238 0.239 268 123 169 560
100 s(5) 0.631 0.077 0.627 0.104 -0.052 -0.045 219 127 125 472
100 s(10) 0.631 0.071 0.626 0.097 -0.051 -0.044 248 146 145 539

Saez

50 n 0.296 0.087 0.286 0.108 0.507 0.523 17 102 14 132
75 n 0.452 0.120 0.436 0.153 0.247 0.273 17 137 13 166
100 s(5) 0.616 0.179 0.590 0.198 -0.027 0.017 14 137 10 160
100 s(10) 0.621 0.157 0.596 0.198 -0.034 0.006 15 158 11 184

Saez and log-normal ML bunching estimators as described in part 4 and Aronsson et al., (2018).
1,000 replications with 10,000 individual observations over 12 years each. The ETI α is set to 0.6
for those tax units that respond, and to 0 for all other tax units. Prop: proportion of tax units that
react to taxation. Dist: distribution of unobserved component; n ≡ log-normal; s(i) ≡ log-Student’s
t-distribution with i degrees of freedom. Tax environments: small kink: ntr0 = 0.65, ntr1 = 0.55,
dif = 0.1; large kink: ntr0 = 0.65, ntr1 = 0.45, dif = 0.2. See table (17) and part (3) for details.
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Table 16. Selected statistics of the simulated distribution of
the Indirect Inference estimator, robustness tests

ETI results relative bias

error prop dist mean sd p50 iqr mean p50 converged reps

AR

50 n 0.276 0.033 0.275 0.045 -0.541 -0.541 943 1000
75 n 0.429 0.040 0.427 0.054 -0.285 -0.288 937 1000
100 s(5) 0.571 0.049 0.571 0.063 -0.048 -0.048 540 1000
100 s(10) 0.586 0.049 0.585 0.068 -0.023 -0.025 867 1000

MA

50 n 0.276 0.031 0.275 0.044 -0.539 -0.542 999 1000
75 n 0.429 0.036 0.427 0.050 -0.286 -0.288 996 1000
100 s(5) 0.578 0.049 0.578 0.067 -0.037 -0.037 887 1000
100 s(10) 0.583 0.043 0.582 0.055 -0.029 -0.029 994 1000

Note: Indirect inference estimator as described in part (4). 1,000 replications with 10,000
individual observations over 12 years each, facing the tax environment in column 3. The
ETI α is set to 0.6 for those tax units that respond, and to 0 for all other tax units. The
share of the variance attributed to the permanent effect φ is set to 0.5. Prop: proportion
of tax units that react to taxation. Dist: distribution of unobserved component; n ≡ log-
normal; s(i) ≡ log-Student’s t-distribution with i degrees of freedom. Tax environment:
DK Danish tax variability with Swedish tax rate means. See table (17) and part (3) for
details..
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Appendix A. Details of Simplified Swedish Tax System

Table 17. Rates and Threshold levels of the Simplified Tax
Systems.

tax environment
SW DK DKi DKd

year τ c0 τ c1 τ c0 τ c1 τ c0 τ c1 τ c0 τ c1 kink earnings
2002 .677 .477 .652 .395 .627 .530 .727 .395 252000
2003 .677 .477 .652 .395 .627 .530 .727 .395 273800
2004 .677 .477 .652 .395 .627 .530 .714 .395 284300
2005 .669 .469 .627 .446 .652 .519 .689 .436 291800
2006 .669 .469 .627 .441 .652 .509 .689 .441 298600
2007 .669 .469 .627 .436 .652 .509 .689 .446 306000
2008 .669 .469 .664 .467 .664 .498 .664 .467 316700
2009 .669 .469 .664 .498 .664 .467 .664 .498 328800
2010 .669 .469 .689 .509 .689 .446 .652 .509 367600
2011 .669 .469 .689 .509 .689 .441 .652 .509 372100
2012 .669 .469 .689 .519 .689 .436 .652 .519 383000
2013 .669 .469 .714 .530 .714 .395 .627 .530 401100
2014 .669 .469 .727 .530 .727 .395 .627 .530 413200
2015 .669 .469 .727 .530 .727 .395 .627 .530 433200

Note: The table describes the net of tax rates before, τ c0 , and after, τ c1 , the earnings
limit for τ c1 over time (in nominal SEK; 400000 SEK ≈ 45000 USD). Tax environments:
DK Danish tax variability with Swedish tax rate means, DKi same tax rates, ordered
with increasing spread, DKd decreasing spread, SW simplified tax system Ume̊a,
Sweden. See part 3 for details.
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Appendix B. Selected Estimates in the Literature

Table 18. Selected IV Estimates in the Literature

paper obs ETI se ase t-stat cutoff k δ yy income

total annual

Weber
24576 6044 0.858 0.311 0.24 2.8 $ 10k 2 2 6 ti
25097 6157 0.475 0.268 0.21 1.8 $ 10.5k 2 2 6 bi

GS
59199 6578a 0.611 0.144 0.12 4.2 $ 10k 0 3 9 ti
69129 7681a 0.170 0.106 0.09 1.6 $ 10k 0 3 9 bi

DPS

2713842 387692a 0.337 0.023 0.14 14.91 e 10k 1 1 7 ti
2713842 387692a 0.144 0.014 0.09 10.44 e 10k 1 1 7 bi
2261535 376923a 0.406 0.021 0.13 19.7 e 10k 2 2 6 ti
2261535 376923a 0.139 0.014 0.08 10.17 e 10k 2 2 6 bi

KS
29398652 1547297a 0.064 0.003 0.04 21.3 dkk 0 0 3 19 ti
29540762 1554777a 0.052 0.003 0.04 17.3 dkk 0 0 3 19 bi

Note: The table describes the standard deviations of different regression-based ETI stud-
ies. Weber: Weber, 2014, GS: Gruber and Saez, 2002, DPS: Doerrenberg et al., 2017, KS:
Kleven and Schultz, 2014. obs: total and annual observation numbers, a: annual average,
calculated by us based on total observations, ETI: estimated ETI parameter, se: standard
error of estimation (we assume that all standard errors were clustered at the individual
level), ase: adjusted standard error (corresponding to the number of annual individual
observations in our Monte Carlo simulation), t-stat: t-statistic, cutoff: income cutoff, k:
instrument lag before base year, δ: year difference between base year and end year, yy:
panel length (number of year differences), income: income concept (ti: taxable income.
bi: broad income).

Table 19. Selected Bunching Estimates in the Literature

paper annual obs ETI data years sub-group

Saez 80000 to 200000
0.162

IRS
1988-2002 all tax filers

0.209 1960-1969 all tax filers

CFOP
3811602a 0.001

DKRD 1994-2001
wage earners

230758a 0.240 self-employed

BS
6083914a,b 0.004

SERD
1999-2005 full population

796922a 0.024 2000-2008 self-employed
Note: Saez: Saez, 2010, CFOP: Chetty et al., 2011, BS: Bastani and Selin, 2014; IRS: an-
nual cross-sections, Individual Public Use Tax Files; DKRD: Danish register data; SERD:
Swedish register data.a annual average, calculated by us based on total observations, b

reported in working paper version Bastani and Selin, 2012.

Table 18 reports point estimates and standard errors for several IV regression
analyses in the literature. Correcting for the number of unique individual observa-
tions, we can adjust the reported standard errors for the ETI parameter such that
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they correspond to the sample size of our Monte Carlo simulations (10000 annual
individual observations). These adjusted standard errors (ase) are reported in the
sixths column of Table 18, and range between 0.04 and 0.24, depending on the
dataset used and specification details.

We can compare these adjusted standard errors to the standard deviations of
the IV estimators that we find in our simulations. In the Weber specifications (k >
0), our standard deviations of the estimators range roughly between 0.1 and 0.2
for the most informative tax environment, and increase in other tax environments.
When we reproduce GSs approach, our standard deviations of the point estimate
do typically not exceed 5. The estimates reported here show that the variability
of the estimators produced by our simulations is of comparable size as the range
of empirically observed results.

Table 19 reports estimates for several bunching analyses in the literature. It
shows that bunching estimates for Denmark and the US are considerably smaller
than the IV regression estimates reported in Table 18. These comparisons are of
course illustrative, as the identifying populations are not identical.
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Appendix C. Auxiliary Statistics for Indirect Inference

The first set of auxiliary statistics captures means of the earnings distribution
and earnings growth. We characterize the mean log earnings below and above the
kink Mlevel, Mlevel>kink and the mean earnings growth Mgrowth. To calculate the
first two quantities we smooth the indicator function 1[x<0] using a simple logit
cumulative distribution function with scale parameter (the smoothing parameter)

set at sm: L(x, sm) =
(
1 + exp(−sm · x)

)−1
. In addition we define L̄(x, sm) =

1 − L(x, sm). As the smoothing parameter sm increases the function L(x, sm)
becomes almost indistinguishable from the indicator function. Using the smoothed
version of the indicator function (and other function we define below) is particularly
important in the optimization step of the indirect inference approach.

The second set of auxiliary statistics captures the information required to cal-
culate the bunching estimator i.e. the proportion of observations observed within
approximately 100 · q% of the kink, adjusted for the difference in the net-of-tax
rates, Pkink, and the average density of the earnings distribution within 100 · r%
off the kink but not at the kink itself, Paround kink, with r > q.15

To define these statistics we use the smooth function K(x, q, sm) = L(x +
q, sm)L̄(x− q, sm)/L(q, sm)2 to approximate the indicator 1|x|<q for q positive.16

Furthermore, we set K̄(x, q, sm) = 1 −K(x, q, sm) which then approximates the
indicator 1|x|>q.

In the specific context of our simulation experiment, where the unobserved
components are normally distributed, and simplifying by assuming that the kink
and the net-of-tax rates are constant over time, the quantity Pkink measures(

Φ[
1

σω
(ln k + q − κ− α ln τ c1)]− Φ[

1

σω
(ln k − q − κ− α ln τ c0)]

) 1

ln
τc0
τc1

.

In the spirit of Saez’s approximation, using the Taylor expansion to the first order
we can approximate Pkink as

φ[
1

σω
(ln k − κ− αln τ c)](2q + α ln

τ c0
τ c1

)
1

ln
τc0
τc1

,

with ln τ c = (ln τ c1 + ln τ c0)/2. Similarly, the density Paround kink measures

[Φ[
1

σω
(ln k + r − κ− α ln τ c1)]− Φ[

1

σω
(ln k + q − κ− α ln τ c1)]

+ Φ[
1

σω
(ln k − q − κ− α ln τ c0)]− Φ[

1

σω
(ln k − r − κ− α ln τ c0)]]

1

2(r − q)
,

15Note that q, r and sm are fixed parameters as far as the estimation is concerned. In our
Monte Carlo experiment we set q = 0.001, r = 0.15 and sm = 100.
16The adjustment by L(q, sm)2 is only important if q is small, i.e. so that q · sm < 10,
and it ensures that K(0, q, sm) = 1. When q · sm > 10, L(q, sm)2 is approximately equal
to 1.
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which we can approximate as

φ[
1

σω
(ln k − κ− αln τ c)].

The ratio of the two approximated quantities thus reduces to

Pkink

Paround kink
≈

2q + α ln
τc0
τc1

ln
τc0
τc1

.

Hence for small q, we obtain an estimator α̃ for α

α̃ ≈ Pkink

Paround kink
.

This expression shows that the ratio of the two auxiliary statistics is particularly
informative about the value of the ETI. Furthermore, these two auxiliary statistics
rely on level cross sectional information only.

The third set of auxiliary statistics captures the proportion of observations
moving around the kink. These statistics are informative about the relative im-
portance of the transitory term in the unobserved component relative to the ETI.
In a world where the kink changes over time we expect the transitions around the
kink to be unbalanced: the proportion of observations moving in one direction, i.e,
from below to above the kink, may be larger than the proportion of observations
moving in the other direction. We measure these transitions by considering the
proportion of observations which are observed below the kink at time t and above
the kink at time t+ 1, Tbelow/above, and vice-versa, Tabove/below.
Observe that Tbelow/above is an estimate of the average over all periods of the
probabilities

Pr
[
ωt < z−kt , ωt+1 > z+k

t+1

]
= Φ2[z−kt /σω,−z+k

t+1/σω,−ρt,t+1],

while Tabove/below measures the average of

Pr
[
ωt > z+k

t , ωt+1 < z−kt+1

]
= Φ2[−z+k

t /σω, z
−k
t+1/σω,−ρt,t+1],

where z−kt = ln kt−κ−α ln τ c0t, z
+k
t = ln kt−κ−α ln τ c1t and ρt,t+1 is the correlation

between ωt and ωt+1.
Consider now the difference between Tbelow/above and Tabove/below at times t

and t+ 1 only. In general, this is

Tbelow/above − Tabove/below =

Pr
[
ωt < z−kt

]
− Pr

[
ωt+1 < z+k

t+1

]
−

Pr
[
ωt < z−kt , ωt+1 < z+k

t+1

]
+ Pr

[
ωt < z+k

t , ωt+1 < z−kt+1

]
.
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Observe that if z+k
t = z−kt and z+k

t+1 = z−kt+1, then the previous expression simplifies
to read

Tbelow/above − Tabove/below = Pr
[
ωt < z−kt

]
− Pr

[
ωt+1 < z+k

t+1

]
.

This suggests, therefore, to approximate the difference between the probabilities
at the mean of the quantities z+k

t and z−kt , and z+k
t+1 and z−kt+1, i.e.,

Tbelow/above − Tabove/below ≈

Pr
[
ωt < (z−kt + z+k

t )/2
]
− Pr

[
ωt+1 < (z−kt+1 + z+k

t+1)/2
]
.

To a first order in the log normal case this becomes

Tbelow/above − Tabove/below ≈
α

σω
(ln τ ct − ln τ ct+1)φ[

1

σω
(z−kt + z+k

t + z−kt+1 + z+k
t+1)/4],

The first term in this approximation reflects the interaction between the ETI,
α, and the variance of the unobserved component. The approximation suggest,
therefore, that if the ETI is small, or if the average of the log of the net tax rates
is constant over time, the difference between the two transition rates will be close
to zero. Similarly if the overall variance, σ2

ω, is large, the two transition rates are
nearly equal. Note that we can not consider the case when σ2

ω is small, since it
would mean that there is no variability in the data either from a permanent source
or a transitory source.

To account for the error structure, in the fourth set of statistics we measure the
variance of log earnings around their year average, Vlevel, as well as the variance
in earnings growth around their year average, Vgrowth. The first quantity captures
the overall variability, while the second term only captures the variance of the
transitory component.

Finally, we measure three covariances. The first two Clevel and Cgrowth are
auto-covariances, which are informative about the autocorrelation of the transi-
tory component. The last covariance, Cgrowth tax measures the association between
the growth of the net-of-tax rate and earnings growth. We would expect this quan-
tity to respond to the value of the ETI.

Means

Mlevel<kink =
1

NT

∑
i

∑
t=1

lnwhit · L(ln
kt
whit

, sm),

Mlevel>kink =
1

NT

∑
i

∑
t=1

lnwhit · L̄(ln
kt
whit

, sm),

Mgrowth =
1

N(T − 1)

∑
i

∑
t=2

∆ lnwhit,
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Proportions

Pkink =
1

NT

∑
i

∑
t=1

K(ln
kt
whit

, q, sm)
1

ln
τc0t
τc1t

,

Paround kink =
1

NT

∑
i

∑
t=1

K(ln
kt
whit

, r, sm)K̄(ln
kt
whit

, q, sm)

Transitions

Tbelow/above =
1

N(T − 1)

∑
i

∑
t=2

L(ln
kt−1

whit−1
, sm)L̄(ln

kt
whit

, sm),

Tabove/below =
1

N(T − 1)

∑
i

∑
t=2

L̄(ln
kt−1

whit−1
, sm)L(ln

kt
whit

, sm),

Variances

Vlevel =
1

NT

∑
i

∑
t

(lnwhit − lnwh.t)
2,

Vgrowth =
1

N(T − 1)

∑
i

∑
t=2

(∆ lnwhit −∆ lnwh.t)
2,

Covariances

Clevel =
1

N(T − 1)

∑
i

∑
t=2

(lnwhit−1 − lnwh.t−1)(lnwhit − lnwh.t),

Cgrowth =
1

N(T − 2)

∑
i

∑
t=3

(∆ lnwhit−1 −∆ lnwh.t−1)(∆ lnwhit −∆ lnwh.t),

Cgrowth tax =
1

N(T − 1)

∑
i

∑
t=2

∆ lnwhit∆ ln τ cit.

We collect all these statistics into a vector s where

s = (Mlevel<kink,Mlevel>kink,Mgrowth, Pkink, Paround kink,

Tbelow/above, Tabove/below, Vlevel, Vgrowth, Clevel, Cgrowth, Cgrowth tax).


