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Abstract
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1 Introduction

Several empirical regularities, such as lower labor supply elasticity for young workers (Blun-

dell & MaCurdy, 1999) and persistence in labor earnings (Storesletten et al., 2004) can be

explained with models of work experience accumulation. Recent optimal tax literature has

shown that these two facts call for conflicting policy prescriptions. For instance, models

featuring persistent productivity shocks prescribe tax rates that increase with age (Farhi &

Werning, 2013; Stantcheva, 2014b). Contrastingly, models of learning-by-doing featuring no

productivity shocks prescribe the exact opposite (Best & Kleven, 2013; Kapicka, 2014).

Thus, features of the age structure of tax schedules are still an open question. This paper

studies an optimal history-dependent tax system when future wage rates, while depending

on accumulated work experience, are risky prospects. It adds to the recent strand of liter-

ature on age-dependent taxation (Kremer, 2002; Blomquist & Micheletto, 2008; Weinzierl,

2011) and it also enriches the new dynamic optimal tax literature of Golosov et al. (2003);

Kocherlakota (2005); Golosov et al. (2007). In particular, I identify new key factors that

should help us think through the optimal age-dependent tax structure.

The results I obtain, using data from the 2007 Panel Study of Income Dynamics (PSID),

are first that in the optimum a majority of workers (roughly 62% to 77%) will face higher

expected marginal labor income tax rates when old.1 Second, whether the cross-sectional

average of marginal labor income tax rates is lower when young then when old depends

heavily on the complementarity between the stochastic shock and the accumulated work ex-

perience. The information obtained on cross-sectional averages of the labor distortions can

yield important insights in light of the results of Farhi & Werning (2013). They show that

1Solving the problem of the planner yields the optimal labor and saving distortions. Under a specific
implementation of the optimal allocation, the optimal labor distortions can be interpreted as marginal tax
rates of a history-dependent tax system.
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setting linear age-dependent taxes such that the tax rates at each age are the cross-sectional

averages of the fully history-dependent tax system can capture almost all of the welfare gains

of the second-best compared to the laissez-faire outcome. Using a Constant Elasticity of

Substitution (CES) wage function, I illustrate that when the elasticity of complementarity

between shock and accumulated work experience is below one, the cross-sectional average

marginal income tax rate is lower when young, and when it is above one, the cross-sectional

average is lower when old.2 A possible explanation for this result is that a greater com-

plementarity in the wage function leads to a higher wage elasticity with respect to work

experience at the lower end of the shock distribution. In accordance with the results of Best

& Kleven (2013) this would push marginal labor income taxes upwards for lower income

young workers as their labor effort becomes less elastic to taxation. I show that using the

cross-sectional averages to build an age-dependent tax system can also capture much of the

welfare gains from the optimal non-linear dynamic tax system.

On theoretical grounds, I provide an analytical characterization of the optimal history-

dependent tax system using the characteristics of the optimal second-best allocation. In

addition to the redistributive and efficiency motives, the optimal labor distortion (wedge)

formula reflects a balance between three motives that capture the added effects of having

risk and work experience determining the wage when old. The first of these is a second-best

rationale that pushes the first period labor wedge downward to encourage work experience

accumulation. The second captures the insurance goals of the planner that will either push

upward or downward the labor wedge depending on whether the Hicksian complementary

coefficient between shock and work experience is above or below one. The third is an in-

centive motive which takes into account the disincentive on work experience accumulation

coming from taxation in the second period. This motive will either push downwards or up-

wards depending on whether the second period consumption and marginal benefit of work

2Note that the elasticity of complementarity is the inverse of the elasticity of substitution. For the CES
function used in the simulations, the elasticity of complementarity is also equal to the Hicksian complemen-
tarity coefficient.
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experience is positively correlated or negatively correlated.

The optimal labor wedge formula when old, although similar to the formula found in the

Mirrleesian optimal tax literature, is supplemented by the wage elasticity with respect to the

second period shock. The more elastic the wage is with respect to the shock the higher the

second period wedge will be. As shown in Golosov et al. (2015), the shape of the optimal tax

schedule is heavily influenced by the hazard ratio of the stochastic shock. I show that the

behavior of the wage elasticity with respect to the shock, as the second period shock tends

to infinity, either reinforces or drastically diminishes the impact of the hazard ratio on the

labor wedge formula when old. This new result also depends crucially on the complemen-

tarity between the shock and accumulated work experience. I further show that the riskier

the second period is, the higher the second period labor wedge should be at the right tail of

the distribution of shocks. The impact of risk on the whole tax system is investigated using

numerical simulations. Increasing the volatility of stochastic shocks in the second period

increases labor wedges in both period but much more drastically when old. In fact, when

reducing the volatility of the second period shock, it is possible to see the increasing pattern

of taxation with age result be reversed for the cases where the elasticity of complementarity

is below one. This pattern can also be reversed in the case where the planner would put

more weight on the workers who receive low wages in the first period.

This project is closely related to the new public finance literature that looks at charac-

teristics of the optimal tax system when skill shocks are persistent, such as Farhi & Werning

(2013) and Golosov et al. (2015). It builds on these contributions as it follows the first-order

approach to solve the planner’s problem but models the persistence of productivity directly

by incorporating work experience.3 By endogenizing the wage formation process, the optimal

3As we will explain in more detail below, the planner is able to observe the accumulation of work expe-
rience. This assumption allows us to keep common knowledge of preference, and thus our analysis is also
similar to Albanesi & Sleet (2006).
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policies take into consideration the effect of taxes and how they effect persistence of earnings.

It is also tied to recent work on optimal taxation with human capital and risky environments

where human capital is acquired through either schooling or on-the-job training programs

(Bohacek & Kapicka, 2008; Kapicka, 2014; Kapicka & Neira, 2014; Stantcheva, 2014b).

Finally, the paper contributes to the literature on optimal taxation with learning-by-

doing. Krause (2009) considers optimal taxation in a two-type model similar to Stiglitz

(1982), where the planner can commit or not to a two-period income tax schedule. The

author finds that the no-distortion-at-the-top result no longer applies and that there are

some cases where it is justified to tax the high skilled workers even if it depresses both labor

supply and future wages. Best & Kleven (2013) also considers a Mirleesian economy with a

continuum of types. They study both age-independent and age-dependent taxation. Their

numerical simulations make a strong case for higher age-dependent income tax rates for the

young. This is due to endogenous wage rates and a negative correlation between age and

innate (first period) ability (conditional on earnings). In contrast to Krause (2009) and Best

& Kleven (2013), I incorporate uncertainty in the second period wage rate and the ability

for workers to save.

Stantcheva (2014a) considers a more general framework where “training” is a form of

human capital investment. In the author’s paper, workers face a risky environment where

their choice of training effort can be either a substitute or a complement to labor effort.

It is shown that one of the limit case of the general model is the learning-by-doing model.

However, most of the analysis undertaken in the paper focuses on the impact of the substi-

tutability or complementarity of training effort with respect to labor effort on the optimal

tax schedule. This present paper analyses the case where labor supply decisions necessarily

involves learning through the accumulation of work experience. In that respect, it is more

in line with Krause (2009) and Best & Kleven (2013).
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The rest of the paper is organized as follows. Section 2 presents the two-period model

and writes the planner’s problem recursively. Section 3 considers the characteristics of the

optimal income tax systems derived from analytical results. Section 4 presents different nu-

merical simulations to highlight further properties of the optimal allocation. Finally Section

5 is dedicated to concluding comments.

2 The Model

The economy is populated by workers who live for two periods t = 1, 2, each period they

consume ct and provide labor effort lt from which they acquire work experience. Workers

obtain wage wt and and earn gross income yt = wtlt. The wage wt(θt, et) is a function of the

time-varying shock θt and of the stock of effective work experience et. It is assumed that:

∂wt
∂θt

> 0;
∂wt
∂et

> 0
∂2wt
∂θt∂et

≥ 0;
∂2wt
∂2x

≤ 0 for x = {θt, et}, (2.1)

where the stock of worker experience evolves according to

et+1 = φ(yt) + et, (2.2)

where φy > 0 and the starting level of work experience, e1, is identical for all workers.45 In

each period, worker’s shock θt is distributed according to the density f t(θt) with support [θ, θ̄].

The focus is restricted to shocks that are independent across periods and endogenize the

4There are no assumption made on the second derivative of the function φ(yt). The problem of the worker
is assumed to be concave due to the properties of the wage function and the disutility function of labor effort.

5Making work experience a function of both income and present period shock θ, e.g. φ(θt, yt), would
remove the common knowledge of preference assumption as work experience would no longer be observable
to the planner.
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persistence of wages through accumulated work experience. Let the per period preferences

be represented by the following utility function

u(ct)− h(lt), (2.3)

with u being strictly concave, h strictly convex, and also define θt as the history of shocks

up to period t. For a given allocation {c(θ2), y(θ2)} that specifies consumption and income

for each history of shocks the worker’s expected lifetime utility is

U({c, y}) ≡
2∑
t=1

βt−1

∫ [
u(c(θt))−h

(
y(θt)

wt(θt, et(θt−1))

)]
f 2(θ2)f 1(θ1)dθ2dθ1, (2.4)

where β is the discount factor.

Incentive Compatibility and Planner’s Problem: The particularity of Mirrleesian

optimal taxation is that worker’s shocks are private observation and that the planner is

constrained by the information he has, i.e. he can only observe labor income and savings.6

By the revelation principle, it is possible to focus on direct mechanisms where workers will

report their type every period. A reporting strategy σ = {σ1(θ1), σ2(θ2)} implies a history

of per period reports σt(θt), for which the planner allocates consumption c(σt), income y(σt)

and by extension accumulation of work experience effective in the second period, i.e.

e2(σ1(θ1)) = φ(y(σ1(θ1)) + e1.
7 (2.5)

For an allocation {c, y}, let ω(θt) denote the equilibrium continuation utility after history

6However, the distribution of shocks is known to the planner.
7Work experience e(σ1(θ1)) is also a function of e1 but since it is assumed that all workers start with the

same level of work experience, for simplicity of exposition, we will omit to include this level of starting work
experience for the rest of the paper.
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θt, defined as the unique solution to

ω(θt) = u
(
c(θt)

)
− h

(
y(θt)

wt(θt, et)

)
+ β

∫
ω(θt, θt+1)f t+1(θt+1)dθt+1 (2.6)

for t = 1, 2 with ω(θ3) ≡ 0.8 For any reporting strategy σ, let the continuation value ωσ(θt)

be the unique solution to

ωσ(θt) = u
(
c(σt(θt))

)
− h

(
y(σt(θt))

wt(θt, et)

)
+ β

∫
ωσ(θt, θt+1)f t+1(θt+1)dθt+1. (2.7)

An allocation {c, y} is said to be incentive compatible if and only if

ω(θt) ≥ ωσ(θt) ∀θt, ∀σ. (2.8)

Therefore an allocation is incentive compatible if truth telling, i.e. σ∗ = {σ∗(θt)} with

σ∗t (θt) = θt yields a weakly higher continuation utility.

As in Golosov et al. (2015), the planner evaluates welfare of workers using Pareto weights

a(θ1) ≥ 0. Weight a(θ1) is given to workers who received θ1 in the first period. The weights

also have the characteristic that
θ̄∫
θ

a(θ1)f 1(θ1)dθ1 = 1. Hence social welfare for a given

allocation is

SW ({c, y}) ≡
θ̄∫
θ

a(θ1)

{
E1

(
2∑
t=1

βt−1

[
u(c(θt))−h

(
y(θt)

wt(θt, et(θt−1))

)]∣∣∣∣∣ θ1

)}
f 1(θ1)dθ1,

where E1 is the conditional expectation of the worker that received shock θ1 in the first

period. Let υ0 be the value of social welfare that the planner credibly promises to deliver

to society. Also suppose that the economy has a linear technology that transform effective

labor into consumption and that the planner can transfer resources across periods at a gross

8Note that ω(θt, θt+1) stands in for ω(θt+1) for clarity of exposition.
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interest rate of R. The planner’s problem is then to minimize the cost of providing allocation

{c, y} subject to the allocation being incentive compatible and offering υ0, i.e.

K(υ0, e1) = min
{c,y}

[
2∑
t=1

(
1

R

)t−1 ∫ {
c(θt)− y(θt)

}
f 2(θ2)f 1(θ1)dθ2dθ1

]
(2.9)

s.t. υ0 = SW ({c, y}),

ω(θt) ≥ ωσ(θt) ∀θt,∀σ,

e2(θ1) = φ(y(θ1)) + e1.

The relaxed problem

Following Farhi & Werning (2013), I use the first-order approach to write a relaxed prob-

lem of the planner’s problem. The approach relies on changing the incentive constraint (2.8)

to a “temporal” incentive constraint which only considers one-shot deviations every period.

They show that the set of allocations that satisfy these new incentive constraints from the

relaxed problem is a subset of allocations that satisfy (2.8).9

I derive the temporal incentive constraints as in Farhi & Werning (2013). Working

backwards and starting from period 2, let the continuation value under truthful revelation,

ω(θ2), be:

ω(θ2) = u(c(θ2))−h
(

y(θ2)

w2(θ2, e2(θ1))

)
. (2.10)

Consider the deviation strategy r where the workers reports truthfully until t but not during

period t, i.e. σt−1(θt−1) = θt−1 and σt(θt) = r,where r 6= θt. The continuation utility under

9However, much like in the static nonlinear optimal tax case, the validity of the first-order approach in
a dynamic setting is not guaranteed. In the case of a static optimal tax exercise, it can be shown that
when the worker’s utility function satisfies the Spence-Mirrlees single-crossing property and the allocation
satisfies a monotonicity condition, which corresponds to the second-order condition, the optimal allocation is
incentive compatible. In this dynamic setting the envelope condition is a necessary condition, but there are no
“simple” conditions like in the static case that guarantee incentive compatibility. Therefore, in the numerical
simulations below, as in Farhi & Werning (2013) or Golosov et al. (2015), the incentive compatibility of the
allocations from the solutions of the relaxed problems are verified ex-post numerically.
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deviation strategy r in the second period is:

ωσ
r

(θ2) = u(c(θ1, r))− h
(

y(θ1, r)

w2(θ2, e2(θ1))

)
. (2.11)

An allocation is temporary incentive compatible in period 2, if for all histories θ2,

ω(θ2) = max
r

ωσ
r

(θ2). (2.12)

For period 1, let the continuation value under truthful revelation, ω(θ1), be the unique

solution to:

ω(θ1) = u(c(θ1))−h
(

y(θ1)

w1(θ1, e1)

)
+ β

∫
ω(θ1, θ2)f 2(θ2)dθ2. (2.13)

Again, considering a one shot-deviation strategy r, let the continuation utility be the unique

solution to:

ωσ
r

(θ1) = u(c(r))− h
(

y(r)

w1(θ1, e1)

)
+ β

∫
ωσ

r

(e2(θ1, r), θ2)f 2(θ2)dθ2, (2.14)

where e(r) = φ(y(r)) + e1.10 An allocation is temporary incentive compatible in period 1, if

for all shock θ1,

ω(θ1) = max
r

ωσ
r

(θ1).11 (2.15)

An allocation is incentive compatible, i.e. constraints (2.8) hold, if for all histories of

shocks both

ω(θ1) = max
r

ωσ
r

(θ1) and ω(θ2) = max
r

ωσ
r

(θ2) (2.16)

are true. Following the first-order approach, these temporary incentive constraints are re-

10ωσ
r

(r, e(r), θ2) can be any future strategy and has no link to the period 2 one-shot deviation utility
ωσ

r

(θ2).
11Equivalently it can be written

ω(θ1) = max
r

{
u(c(r))− h

(
y(r)

w1(θ1, e1)

)
+ β

∫
ωσ

r

(r, e2(r), θ2)f2(θ2)dθ2

}
.

10



placed by the following envelope conditions applied to (2.16):

ω̇(θ1) : =
∂ω(θ1)

∂θ1

=

h′
( y(θ1)

w1(θ1, e1)

)
y(θ1)

[w1(θ1, e1)]2
∂w1(θ1, e1)

∂θ1

, (2.17)

ω̇(θ2) : =
∂ω(θ2)

∂θ2

=

h′
( y(θ2)

w2

(
θ2, e2(y(θ1))

))y(θ2)

[w2

(
θ2, e2(y(θ1))

)
]2

∂w2

(
θ2, e2(y(θ1))

)
∂θ2

. (2.18)

The problem is written recursively starting with the second period problem. Let

υ(θ1) =
∫
ω(θ1, θ2)f 2(θ2)dθ2 be the expected continuation utility. The second period problem

of the planner is to minimize the second period expected costs taking as given υ(θ1) and

e(θ1) (expressed as υ, and e2 respectively) subject to the envelope condition,

K(υ, e2, 2) = min
{c(θ),y(θ)}

∫
[c(θ)− y(θ)]f 2(θ)dθ (2.19)

s.t. ω(θ) = u
(
c(θ)

)
−h
(

y(θ)

w2(θ, e2)

)
υ =

∫
ω(θ)f 2(θ)dθ

and (2.18).

The first period problem taking as given υ0 and starting work experience e1 is

K(υ0, e1, 1) = min
{c(θ),y(θ),ω(θ),υ(θ)}

∫ [
c(θ)− y(θ) +

1

R
K
(
υ(θ), e(θ), 2

)]
f 1(θ)dθ

s.t. ω(θ) = u
(
c(θ)

)
−h
(

y(θ)

w1(θ, e1)

)
+ βυ(θ) (2.20)

υ0 =

∫
a(θ)ω(θ)f 1(θ)dθ

e(θ) = φ(y(θ)) + e1

and (2.17).
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The value of υ0 is chosen to be the highest value such that the expected ressource costs

of providing this level of social welfare is zero, i.e. K(υ0, e1, 1) = 0.

3 The Optimal Allocation: Optimal Wedges

3.1 Definitions

To write and interpret the optimal wedge formulas I require the use of several terms which

I define below.

Wedges

In the static non-linear optimal taxation literature differences in marginal utility of con-

sumption and marginal disutility of labor are interpreted as marginal taxes. However, in

a dynamic setting, these differences can no longer readily be interpret in such a way. It is

then convenient to define these differences as wedges which help in getting intuition from the

solution of the optimal allocation problem. One of the issues with interpreting wedges as

taxes is that there can be many different combinations of tax instruments to implement the

optimal allocation. Furthermore, as argued by Golosov et al. (2007) each wedge corresponds

to a particular choice of the worker taking all other choices fixed at a specific level. Since

choices are made jointly in a decentralized economy setting, a particular tax rate equal to

the wedge without further restrictions on the tax instruments may lead workers to deviate

and the optimal allocation may not be implemented. Nonetheless, some implementations,

like the one elaborated in Appendix B, can equate the labor wedges to marginal tax rates.

For this reason, this paper sometimes uses those terms interchangeably.

For any allocation {c, y} after any history θt, let the intertemporal wedges τK(θ1) and
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the labor wedges τL(θ1), τL(θ2) respectively be:

τK(θ1) =1− 1

Rβ

u′(c(θ1))

E
[
u′(c(θ2))

] ∀θ1, (3.1)

τL(θ1) =1−
h′
(

y(θ1)

w1(θ1, e1)

)
u′(c(θ1))w1(θ1, e1)

+ β
φy(y(θ1))

u′(c(θ1))
E
[
MB(θ2)

]
∀θ1, (3.2)

τL(θ2) =1−
h′
(

y(θ2)

w2(θ2, e(θ1))

)
u′(c(θ2))w2(θ2, e(θ1))

∀θ2, (3.3)

where

MB(θ2) ≡
h′
(

y(θ2)

w2(θ2, e2(θ1))

)
y(θ2)

[w2(θ2, e(θ1))]2
∂w2(θ2, e(θ

1))

∂e(θ1)

is the realized marginal benefit of work experience and E[MB(θ2)] is the expected marginal

benefit of work experience from the point of view of the first period.12

Hicksian Complementarity

Let the Hicksian complementarity coefficient between the shock θ2 and work experience e2

be defined as

ρ(θ2, e2) ≡

∂2w2(θ2, e2)

∂θ∂e2

w2(θ2, e2)

∂w2(θ2, e2)

∂θ

∂w2(θ2, e2)

∂e2

. (3.4)

This coefficient measures how complementary the shock and work experience are in the

production of the second period wage. For any wage function that is additive in shock and

12The marginal benefit can also be written using labor instead of income:

MB(θ2) ≡
h′
(
l(θ2)

)
l(θ2)

w2(θ2, e2)

∂w2(θ2, e2)

∂e
.
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work experience, this term is zero as they are perfect substitutes. In any situation where

∂2w2

∂θ∂e
> 0, the Hicksian complementarity coefficient is positive and work experience will in-

crease exposure to risk. As Stantcheva (2014b) has demonstrated it is the relation of the

Hicksian coefficient with respect to one that is more relevant to the planner for questions of

risk and insurance .13 More precisely, if the Hicksian coefficient is below 1, it implies that the

wage elasticity with respect to the shock is decreasing in work experience, or alternatively

the wage elasticity with respect to work experience is decreasing with respect to the shock.

If the Hicksian coefficient is greater than 1, the wage elasticity with respect to the shock

is increasing in work experience and whenever the coefficient equals 1 the wage elasticity is

constant. Note that a CES wage function where w2 = (θ1−ρ
2 +e1−ρ

2 )
1

1−ρ will have ρ(θ2, e2) = ρ.

Elasticities

Optimal tax formulas are generally written with elasticity parameters which capture the

efficiency cost of taxation. Let

αt(θ
t) ≡ h′′(l(θt)l(θt)

h′(l(θt))
and ηt(θ

t) ≡ −u
′′(c(θt))c(θt)

u′(c(θt))
,

be two elasticity measures.14 The elasticity measure αt(θ
t) is akin to the inverse of the Frisch

elasticity of labor supply.15 The elasticity measure ηt(θ
t) is the inverse of the elasticity of

intertemporal substitution or alternatively the measure of relative risk aversion of the pref-

erences.

13This fact is demonstrated in the optimal tax literature in both Bovenberg and Jacobs (2011) and
Stantcheva (2014b).

14These elasticity measures are used in Golosov et al. (2015).
15In this setting, in the first period it captures the elasticity of labor supply keeping future wage, consump-

tion in both period and future labor supply constant. In the second period it also captures the elasticity of
labor supply keeping consumption in both period and labor in the first period constant.
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3.2 Optimal Wedges

The subsection describes and analyzes the solution to the planner’s problem. The labor

choice distortion in both periods is considered first and the distortion to the saving decisions

is considered later. To obtain further insights on the labor wedges, I make the following

assumption:

Assumption 1. The optimal allocation satisfies

ċ(θt) ≥ 0 ∀θt for t = 1, 2.16

Proposition 1. The optimal labor wedges in periods t=1 and t=2 are:

τ ∗L(θ1) =
µ(θ1)

f 1(θ1)

h′(l1)

w1

εθ1
θ1

(
1 + α1(θ1)

)
− φy
R

E
[
τL(θ2)we2l2

]
− φy
R

{
E

[
MB(θ2)

µ(θ2)

f 2(θ2)

εθ2
θ2

(1− ρθe2)

]
+ Cov

(
1

u′(c2)
,MB(θ2)

)}
(3.5)

τ ∗L(θ2)

1− τ ∗L(θ2)
= u′(c(θ2))

µ(θ2)

f 2(θ2)

εθ2
θ2

(
1 + α2(θ2)

)
≥ 0, (3.6)

16It can be shown that incentive compatibility requires that

∂[u(c(θ)) + βυ(θ)]

∂θ
≥ 0.

I find that Assumption 1 is satisfied in all of our numerical simulations.
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where17

µ(θ1) =

θ̄∫
θ

(
1− g(θ1)

) 1

u′(c(θ1))
f 1(θ1)dθ1, with g(θ1) = a(θ1)u′(c(θ1))λ1,

and λ1 =

θ̄∫
θ

1

u′(c(θ1))
f 1(θ1)dθ1,

µ(θ2) =

θ̄∫
θ

(
1− g(θ1, θ2)

) 1

u′(c(θ1, θ2))
f 2(θ2)dθ2,

with g(θ1, θ2) = u′(c(θ1, θ2))λ2, and λ2 =

θ̄∫
θ

1

u′(c(θ1, θ2))
f 2(θ2)dθ2.

Proof : See Appendix A.1. Also note, that for ease of notation let l(θt) = lt, c(θ
t) =

ct, e(θ
1) = e2, wt(θt, et) = wt, ∂wt/∂e = wet, ∂wt/∂θ = wθt, εθt = wθt ∗ (θ/wt), ρ(θ2, e2) =

ρθe2.

The multipliers associated with the envelope conditions in period 1 and period 2 are

µ(θ1) and µ(θ2) respectively. The first period’s multiplier captures the insurance motive or

the redistributive goals of the planner who promised υ0. And, µ(θ2) is the insurance motive

of the planner who promised continuation utility υ(θ1) to a worker. Parameter g(θt) is the

value to the planner of giving one more dollar to an individual with history θt. Notice that

the Pareto weight a(θ1) only appear in g(θ1). Also, λ1 is the marginal resource cost of pro-

viding a marginal increase in promised utility υ0 and λ2 is the same for the promised utility

υ for period 2 from period 1.

Starting with the second period labor wedge (3.6), notice that it is possible to rewrite it

17I use the same definitions found in Stantcheva(2014b).
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in the ABC form found in the static optimal tax literature, Diamond (2003):

τL(θ2)

1− τL(θ2)
= A(θ2)B(θ2)C(θ2), (3.7)

where

A(θ2) = (1 + α2(θ2))εθ2(θ2),

B(θ2) =
1− F 2(θ2)

θ2f 2(θ2)
,

C(θ2) =

∫ θ̄

θ2

exp

(∫ x

θ2

η(x̃)
ċ(x̃)

c(x̃)
dx̃

)
[1− g(x)]

f 2(x)

1− F 2(θ2)
dx.

The intuition behind this optimal wedge formula goes as follows. Distorting labor supply

at shock level θ2 increases the marginal deadweight burden at this shock level which depends

on the labor supply elasticity α2(θ2) and is amplified by the wage elasticity with respect to

the shock εθ2(θ2). This effect is captured by A(θ2). Note that εθ2(θ2) is not present in most

optimal income tax exercise since a shock (or type) represents the wage rate for a particular

worker type.18 Since wage in this paper is composed of both shock and work experience, the

impact of a change in type on the wage will be present in the envelope condition and thus

in the optimal labor wedge formula.

Increasing the distortion at shock level θ2 transfers resources from workers with higher

shock levels to the planner who’s value for these resources is reflected by C(θ2).19 It is the

insurance motive of the planner. And finally, the hazard ratio B(θ2) reflects the tradeoff be-

tween A(θ2) and C(θ2) as it captures the number of workers related to C(θ2) and the number

of workers at A(θ2). The fact that the wage elasticity, labor elasticity and the density are

18The partial derivative ∂w/∂θ in the standard envelope condition is technically present but it is equal to
one.

19As pointed out in Golosov et al. (2015), the term exp
(∫ x

θ2
η(x̃) ċ(x̃)

c(x̃)dx̃
)

represents the income effect on

labor supply of transferring resources from workers who receive shocks above θ2.
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all positive combined with Assumption 1 leads to the result that the optimal second period

wedge is non-negative.20 From Assumption 1, the monotonicity assumption on consumption,

it is possible to show that µ(θ2) ≥ 0 and thus the result on the optimal wedge follows.21

The formula for the first period optimal wedge (3.5) is composed of four parts.22 The first

part is more familiar and the three others are linked to the accumulation of work experience

through labor. This first part is composed of the redistributive motive, the shock density,

the wage elasticity, and the labor choice elasticity parameter. By the same argument as

above, this first part will also be non-negative as it can be shown that µ(θ1) ≥ 0.

The remaining three novel parts of the optimal first period labor wedge formula are all

linked to the different motives the planner has for work experience accumulation. These

20From the boundary conditions, it is possible to obtain the classic no distortion at the top and bottom.
21See Golosov et al. (2011) and Stantcheva (2014b). The demonstration is simpler than the one in these

papers as it is not necessary to take into consideration the impact of persistence of shocks in the present
setting.

22The first period labor wedge can also be partly written in the ABC form, but its interpretation is much
less straightforward. Equation (3.5) can be rewritten in the following way:

τL(θ1) = A(θ1)B(θ1)C(θ1)

[
h′(l1)

u′(c1)w1

]
− φy
R

{
E
[
τL(θ2)we2l2

]
+ E

[
MB(θ2)

µ(θ2)

f2(θ2)

εθ2
θ2

(1− ρθe2)

]
+ Cov

(
1

u′(c2)
,MB(θ2)

)}
where

A(θ1) = (1 + α1(θ1))εθ1(θ1),

B(θ1) =
1− F 1(θ1)

θ1f1(θ1)
,

C(θ1) =

∫ θ̄

θ1

exp

(∫ x

θ1

η(x̃)
ċ(x̃)

c(x̃)
dx̃

)
[1− g(x)]

f1(x)

1− F 1(θ1)
dx.
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motives are:

E
[
τL(θ2)we2l2

]
︸ ︷︷ ︸

Second-Best Motive

+ E

[
MB(θ2)

µ(θ2)

f 2(θ2)

εθ2
θ2

(
1− ρθe2

)]
︸ ︷︷ ︸
t = 2’s Social Insurance Motive

+ Cov

(
1

u′(c2)
,MB(θ2)

)
︸ ︷︷ ︸

Incentive Motive

.23 (3.8)

The first part of (3.8) is referred to as the second-best motive which captures the ex-

pected marginal revenues the planner gains from increasing the worker’s work experience.

In fact, terms like this one can be found in most optimal tax literature where the planner

distorts more than one market. The planner takes into account the impact of a change in a

tax instrument in one market on the other markets that also face distortions by other tax

instruments. Since τL(θ2) ≥ 0, the fact that we2l2 ≥ 0, and that for any given shock θ1 there

is at least one subsequent shock θ2 where the planner requires l(θ2) > 0 the first part must

be positive. This implies that the second-best motive pushes for a lower optimal first period

wedge which encourages work experience accumulation.

The second part of (3.8) captures the social insurance motive of the planner and how

imperfect information in the second period affects pre and after-tax insurance. The second

part of (3.8) is composed of the marginal benefit of work experience, the insurance motive

in the second period µ(θ2), the density f 2(θ2), the wage elasticity with respect the shock

εθ2, and the Hicksian complimentary coefficient ρθe2. The sign of this part depends entirely

on whether ρθe2 is smaller, equal or greater than one. The planner will want to encourage

work experience when the elasticity of wage with respect to shocks will be decreasing in

work experience, i.e. ρθe2 < 1, and discourage it when the elasticity of wage with respects

to shocks is increasing in work experience, i.e. ρθe2 > 1. The rationale being that the plan-

ner is able to diminish exposure to risk by increasing work experience whenever ρθe2 < 1.

The opposite is true when ρθe2 > 1 making him want to discourage work experience. This

result is similar to the optimal net wedge on human capital expenses in Stantcheva (2014b).

23These three parts are multiplied by −φy/R, which is removed for expositional simplicity.

19



However in this model. it is the expected value of similar terms in the second period that

matters as the effect of work experience is felt in the second period and not in the period it

was accumulated as in Stantcheva (2014b).24

The third part can be seen as providing incentive in a second best framework. In contrast

with the second part, it is linked to the marginal benefit of work experience in terms of

labor disutility and not just benefits in terms of wage. Suppose that the planner was able

to perfectly observe types in the second period, he could perfectly insure the worker, i.e.

c(θ2) = ĉ for all θ2, which would imply that the covariance term would be zero. As the planner

is incapable to do this in an asymmetric information set up, he must offer incentives for

truthful reporting. Assumption 1 states that the optimal allocation features non-decreasing

consumption in period two with respect to shock θ2, thus the covariance term will be positive

if the marginal benefit of work experience is increasing in type. This will depend on two

factors, one behavioral i.e. whether labor effort is generally increasing with type and the

other technological, whether the Hicksian complementarity coefficient is greater or lesser

than one as is shown in the following equations:

∂MB(θ1, θ2)

∂θ2

=
(
1 + α2(l2)

)εe2
e2

l̇(θ2)− h′(l2)l2we2
w2

εθ2
θ2

(1− ρθe2). (3.9)

24Note that the first and second terms of (3.8) can be combined. Using the definition of the optimal second
period labor wedge it is possible to insert it in the insurance motive term. Rearranging and combining the
first two terms of (3.8) it is possible to write the optimal first period labor wedge in the following way:

τ∗L(θ1) =
µ(θ1)

f1(θ1)

h′(l1)

w1

εθ1
θ1

(
1 + α1(θ1)

)
− φy
R

{
E

[
τ∗L(θ2)we2l2

(
2 + α2(θ2)− ρθe2

1 + α2(θ2)

)]
+ Cov

(
1

u′(c2)
,MB(θ2)

)}
.

From this formulation two things come to light. First, the Hicksian complementarity parameter ρ(θ2, e2)
must be at least above 2 to push the value of the combined terms to be negative and thus push the first
period labor wedge upwards. Second, it highlights the importance of the second period labor elasticity apart
from the level of τ∗L(θ2) in determining the first period labor wedge.
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The more a worker works in the second period the more he will gain from an increase

in his wage coming from an increase in the shock. Thus, if labor is increasing in type, the

marginal benefit of work experience should, in part, also be increasing in type. But as it

was argued above, whenever the Hicksian complementarity coefficient is below 1 the wage

elasticity with respect to work experience is decreasing in type. Thus in such a situation

the marginal benefit of work experience will, in part, be decreasing in shock. So, in that

case the effect can push in different directions. If for example labor effort is increasing in

shock and the Hicksian complementarity coefficient is above 1 then the marginal benefit of

work experience must be increasing in shock. If both second period consumption and the

marginal benefit of work experience are increasing in shock, redistribution and information

asymmetry would reduce the incentive to acquire work experience. Hence the planner will

want to decrease the optimal first period labor wedge to incentivize workers to acquire work

experience to counteract the disincentive effect of redistribution in the second period. This

logic is reversed if the covariance term becomes negative, in this case the planner will wish

to increase the optimal first period labor wedge to discourage work experience accumulation.

Intertemporal Wedge:

As utility is separable between consumption and labor effort in this model, the optimal

condition (3.1) has the “inverse Euler equation” feature:

1

u′(c(θ1))
=

1

Rβ

θ̄∫
θ

1

u′(c(θ2))
f 2(θ2)dθ2.

Proposition 2. Suppose that the relaxed problem solves the original problem. Then the
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optimal intertemporal wedge is positive, τ ∗K(θ1) > 0, and satisfies:

τ ∗K(θ1) = 1−

[
θ̄∫
θ

[u′(c(θ2))]−1f 2(θ2)dθ2

]−1

θ̄∫
θ

u′(c(θ2))f 2(θ2)dθ2

> 0.

The proof can be found in Appendix A.2. The result that the intertemporal wedge is

positive is obtained by applying Jensen’s inequality to the definition of the optimal wedge.

This result is found in several NDPF papers such as Kocherlakota (2005); Farhi & Werning

(2013); Stantcheva (2014a).25 The intuition for this distortion is that the planner seeks to

discourage savings as savings make separating workers who received different shocks more

difficult. For the rest of the paper I will sometimes refer to the intertemporal wedge as the

savings wedge.

3.3 Uncertainty for older workers: the CES wage and log-normal

distribution of shocks case

To further investigate the impact of introducing uncertainty in the later period of life on

the age structure of the tax system, this subsection derives additional characteristics on

labor wedges by specifying the functional form of the wage function and the probability

distribution of the shocks.26 Let the functional form of the wage function be

wt(θt, et) = (θ1−ρ
t + e1−ρ

t )
1

1−ρ . (3.10)

25See Golosov et al. (2015) for a more general result featuring non-separable preferences between consump-
tion and labor effort.

26Many of the results in this subsection hold for more general wage functions as shown in the Appendix.
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For this wage function the Hicksian complementarity coefficient, the wage elasticity with

respect to shock, and to work experience are

ρ(θ2, e2) = ρ, εθt =

(
θt
wt

)1−ρ

and εet =

(
et
wt

)1−ρ

. (3.11)

The probability distribution of the shocks considered in this subsection is the log-normal

distribution lnN (µ, σ2) where µ and σ are, respectively, the mean and standard deviation

of the random variables natural logarithm and the probability density function of the log-

normal distribution is

f t(θ) =
1

θσ
√

2π
exp

(
−(ln θ − µ)2

2σ2

)
. (3.12)

3.3.1 No uncertainty in the second period

As a benchmark, consider the characteristics of the optimal allocation when there is no

uncertainty in the second period, i.e. Pr{θ2 = θ̃} = 1. This implies that the wage of each

worker is his accumulated work experience, i.e. w2(θ1) = (θ̃1−ρ + e2(θ1)1−ρ)
1

1−ρ .

Corollary 1. Supposing that the relaxed problem solves the original problem, when

Pr{θ2 = θ̃} = 1 and the second period wage of workers is w2(θ1) the optimal intertemporal

wedge is zero, τ ∗K(θ1) = 0, the second period optimal labor wedge is zero,

τ 2∗
L (θ1) = 0 and the first period labor wedge is :

τ 1∗
L (θ1) =

µ(θ1)

f 1(θ1)

h′(l1)

w1

εθ1
θ1

(
1 + α1(θ1)

)
.

In this special case there is no longer an information problem in the second period as

the planner is able to observe work experience accumulation. In this situation the plan-

ner does not need to distort the second period labor decision. Because there is no need to

distort the second period, there is also no reason for the planner to distort the savings deci-

sion as it will not relax the incentive problem in the second period (or in the first period).

23



This implies that for each worker consumption in both periods is smoothed and follows

u′(c1(θ1)) = βRu′(c2(θ1)). However, since there is still an information problem in the first

period, consumption cannot be equalized in the first period for all workers and by extension

second period consumption is also not equalized. This result is similar to the one obtained

in Atkinson & Stiglitz (1976) where there is no incentive to tax savings when preferences are

separable.

For the first period labor distortion, comparing (3.5) with the optimal first period wedge

in Corollary 1, the difference between those formulas are the three terms of (3.8). As there

is no distortion of the second period labor decisions nor any uncertainty, encouraging or

discouraging work experience accumulation by distorting the first period labor decision is no

longer necessary. Only the redistribution motive and the efficiency motive of the first period

remain.

Note that in this no uncertainty scenario, the results on the second period labor wedge

are different then those of Krause (2009) and Best & Kleven (2013). The reason for this is

twofold. The first is that information available to the planner is different. In this model,

if the worker deviates in the first period, the planner will know his second period wage as

he can observe the worker’s income. This is not the case in both Krause (2009) and Best

& Kleven (2013) as work experience is only a function of labor effort. The planner seeks to

reduce the incentive problem by distorting the second period labor choice. Furthermore in

Best & Kleven (2013), the planner must use age-dependent taxes, this restricts the tools he

has to use to tackle the information problem. The informational structure of this paper offers

the most contrasting results in the case of no uncertainty as the distortions when young are

necessarily greater than the ones when old.
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3.3.2 Impact of complementarity and variance on the second period labor wedge

In opposition to the riskless environment just highlighted above, uncertainty in the second

period forces the planner to distort the second period labor market as shown by (3.6). The

assumptions made on the wage function and the probability distribution allows to charac-

terize in more detail the labor distortion at the right tail of the distribution. This is done

by applying the methodology of Golosov et al. (2015) which consists of investigating the

asymptotic behavior of (3.6) as θ2 goes to infinity. For this, the assumption of a bounded

distribution needs to relaxed and assume that the shocks are non-negative, i.e. θ2 ∈ Θ = R+

in t = 2.

Assumption 2. α2(θ), η2(θ) have finite, non-zero limits ᾱ, η̄; c2(θ)
y2(θ)

has a finite non-zero

limit;
τ2L(θ)

1−τ2L(θ)
has a finite limit; ċ2(θ)/c2(θ)

ẏ2(θ)/y2(θ)
has a limit as θ →∞.27

Assumption 2 is made to guarantee well-behaved cases. In addition, note that as θ2 →∞

the CES wage function (3.10) has a limit ε̄θ2. For parameter values of ρ ∈ [0, 1] the wage

elasticity with respect to shock goes to 1 as the shock goes to infinity, i.e. εθ2(θ, e2)→ 1 (θ →

∞). For a parameter value above 1 the wage elasticity with respect to shock goes to 0 as

the shock goes to infinity, i.e. εθ2(θ, e2)→ 0 (θ →∞). These two facts lead to the following

Corollaries.

Corollary 2.a. Under Assumption 2, a CES wage function with 0 ≤ ρ ≤ 1 and f 2(θ) dis-

tributed lnN (µ, σ2) , as θ →∞ the second period labor distortion is asymptotically equivalent

to
τ 2∗
L (θ)

1− τ 2∗
L (θ)

∼ A(θ)B(θ)C(θ) ∼ (1 + ᾱ) ε̄θ2

(
σ2

ln θ − µ

)
,

where

ε̄θ2 = 1.28

27For ease of exposition, we replace c(θ2), y(θ2) by c2(θ), y2(θ) and τL(θ2) by τ2
L(θ).

28Note that if the CES has a scaling factor κ as in the numerical simulations below the limit of the wage
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As can be seen from Corollary 2.a, the optimal second period wedge as θ goes to infinity

is shaped by the labor elasticity parameter ᾱ, the wage elasticity parameter with respect

to second period shock ε̄θ2 and the variance parameter of the log-normal distribution σ2.

Thus the greater the variance parameter, capturing uncertainty to the worker, the higher

the labor distortion when old. The intuition of this result can be obtained by taking each

part of (3.7) individually. First, consider A(θ) which measures the cost of distorting the

labor decision. This part converges to a finite and positive limit as θ goes to infinity. The

redistributive part C(θ) can also be shown to have a finite limit of 1.29 It can be shown

numerically that for much of the domain of the shock distribution of young workers, C(θ2)

climbs very quickly to its asymptotic value. Finally, the hazard ratio of the log-normal distri-

bution can be shown to go to zero as θ goes to infinity, i.e. B(θ)→ 0 (θ →∞). Even though

B(θ)→ 0 as θ goes to infinity this rate of convergence is rather slow in fact the tail behav-

ior can be characterized by B(θ) ∼ σ2

ln θ−µ . All of these results combined give us Corollary 2.a.

In the case of ρ > 1 the result of Corollary 2.a no longer hold has the limit of the wage

elasticity with respect to shock is zero and thus limθ→∞A(θ) = 0. The following result

considers the behavior of the limit of this elasticity.

Corollary 2.b. Under Assumption 2, a CES wage function with ρ > 1 and f 2(θ) distributed

elasticity with respect to shock would be κ1−ρ.
29C(θ) can be written in the following way:

lim
θ→∞

C(θ) = lim
θ→∞

[1− λ2u
′(c2(θ))] + lim

θ→∞

η2(θ)

η2(θ) + α2(θ)
lim
θ→∞

τ2∗
L (θ)

1− τ2∗
L (θ)

.

The limit of C(θ) can be into two distinct parts. The first part captures the value of extracting a dollar
from a worker who received shock θ and as θ goes to infinity, so does c2(θ) and thus the value of giving (or
leaving) a dollar to shock type θ, measured by g(θ) ≡ λ2u

′(c2(θ)), goes to zero. The second part measures
the income effect on labor effort from distorting labor on type θ. This income effect is of course influenced
by the size of the limit of the second period labor distortion.
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lnN (µ, σ2) , as θ →∞ the second period labor distortion is asymptotically equivalent to

τ 2∗
L (θ)

1− τ 2∗
L (θ)

∼ A(θ)B(θ)C(θ) ∼ (1 + ᾱ)
(e2

θ

)ρ−1
(

σ2

ln θ − µ

)
.30

Note that the change in the wage elasticity does not affect our characterization of

limθ→∞C(θ) nor its interpretation. In this particular context the asymptotic behavior of

A(θ) as θ goes to infinity is A(θ) ∼ (1 + ᾱ)
(
e2
θ

)ρ−1
. Importantly, A(θ), contrary to B(θ),

can go quickly to zero. In fact, the higher the value of ρ above 1 the faster A(θ) converges

to 0. Comparing the results of Corollary 2.a and 2.b, for the right tail of the distribution

of shocks, the optimal labor distortion when old, for a given realization of θ1 in the first

period, should be greater whenever 0 ≤ ρ ≤ 1 compared to when ρ > 1. The intuition is

that whenever the complementarity coefficient ρ is greater than one, a higher shock does

not translate as much to a higher wage for a given level of work experience. Therefore the

government does not gain anything by distorting a wider proportion of the distribution since

the change in information rent gets smaller and smaller.31

4 Numerical Simulations

This section investigates the properties of the optimal wedges and how they are influenced

by different key parameters. To compare the results derived with those of the literature,

I proceed with a calibration exercise to match certain empirical moments of the wage dis-

tribution at each age and the wage elasticity with respect to work experience found in the

meta-analysis of Best & Kleven (2013).

30We also obtain

lim
θ→∞

C(θ) = 1 +
η̄

η̄ + ᾱ
lim
θ→∞

τ2∗
L (θ)

1− τ2∗
L (θ)

31Note that the result from Corollary 2.b should extend to distributions other than log-normal that would
give a positive top marginal tax rate like the pareto-lognormal distribution.
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4.1 Functional Forms, Calibration and Computational Strategy

Functional Forms

The functional form for the per period utility function used is

ln c− l1+α

1 + α
, (4.1)

where α > 0. The function that transform income into effective work experience is

φ(y) = yδ, (4.2)

where δ ∈ (0, 2).32 The wage has a the following CES functional form

wt(θt, et) = κt ∗ (θ1−ρ
t + ξe1−ρ

t )
1

1−ρ , (4.3)

where κt and ξ are scaling parameters with ρ being the Hicksian complementarity parameter.

For simplicity, I assume that all workers start with no accumulated work experience, i.e.

e1 = 0, and that κ1 = 1 in the first period. This implies that in the first period

w1(θ1) = θ1 and e2(θ1) = [y(θ1)]δ. (4.4)

Using both the wage function and the transformation function, the wage elasticity with

32I have no priors related to the value of δ. The range is chosen to insure that the worker’s problem of
choosing labor effort in the first period is concave.
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respect to work experience and the wage elasticity with respect to shock, respectively, are

εe2 = κ1−ρ
2 ∗ ξ ∗

(
e2

w2

)1−ρ

, εθ2 = κ1−ρ
2 ∗

(
θ2

w2

)1−ρ

.33 (4.5)

For the calibrations the wage elasticity with respect to first period labor effort is used.

This elasticity also coincides with the wage elasticity with respect to first period income

γ(θ2, e2) ≡ ∂w2

∂l1

l1
w2

=
∂w2

∂y1

y1

w2

= δ ∗ κ1−ρ
2 ∗ ξ ∗

(
e2

w2

)1−ρ

. (4.6)

Calibration

The different calibrations sets δ, κ2 and ξ to match three target moments. The first target

moment is the mean of the estimated wage elasticity with respect to experience in Best &

Kleven (2013), i.e. γ̂ = 0.29.34 The second and third target moments are the mean and stan-

dard deviation of the wages of head of household workers age 41 and over in the 2007 round

of the Panel Study of Income Dynamics (PSID). These moments were obtained by taking the

hourly wages and age from the 2007 PSID and splitting the sample in two where the cut off is

the median age as in Best & Kleven (2013).35 I then approximated the distribution F young(w)

of the first period of life by a log-normal distribution with (µyoung, σyoung) = (2.805, 0.672)

and the second period of life F old(w) with (µold, σold) = (3.165, 0.814).36 For the calibration

and a majority of the numerical simulations I imposed that F 1(θ) = F 2(θ) = F young(w).

The estimated distribution F old(w) is then used to obtain the mean and standard deviation

of wages in the second period of life.

33Thus for 0 ≤ ρ ≤ 1 this implies that εθ2 → κ1−ρ
2 as θ2 → ∞ and for ρ > 1 it implies that εθ2 → 0 as

θ2 →∞.
34In their numerical simulations this elasticity is then taken to be the wage elasticity with respect to first

period labor effort. They use three scenarios where γ = 0, γ = 0.2 and γ = 0.4. A similar logic is followed
in taking the wage elasticity with respect to experience to be the wage elasticity with respect to first period
labor.

35To make sure the sample is representative I only keep observations that are related to the original
SRC(Survey Research Center) sample.

36To approximate the distribution the command fitdistr from the MASS package in R was used. See
http://cran.r-project.org/web/packages/MASS/index.html.
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I then created a model economy where heterogeneous workers, who will face risk in the

second period of their life, decide how much to work and consume in both periods of their

life, and how much to save at gross interest rate R.37 The following key parameters were

set to be α = 2, β = 0.6 and R = 1/β. The assumption on β and R implies that savings

are for insurance purposes. The 2007 US tax system is approximated by a linear labor

tax following the methodology of Jacquet et al. (2013). Due to limited empirical evidence

on the complementarity between the shock and work experience, several calibrations were

undertaken where ρ takes on different values.38394041

Computational Strategy

The computational strategy closely follows the strategy used in Golosov et al. (2015). The

recursive formulation of the planner’s problem is used to solve a two period discrete-time

37The debt limit was set to 0, i.e. savings must be non-negative.
38As pointed out in Stantcheva (2014b), there is some evidence of complementarity with respect to skill

and on-the-job training. See and OECD (2004) and Huggett et al. (2011).
39In every calibration, the parameters are chosen as to minimize the following loss function

LOSS =

∣∣∣∣ γ̃

0.29
− 1

∣∣∣∣+

∣∣∣∣ w̃2

w̄PSID2

− 1

∣∣∣∣+

∣∣∣∣∣ ˜sd2

s̄d
PSID
2

− 1

∣∣∣∣∣ ,
where γ̃, w̃2, ˜sd2 are, respectively, the mean of the wage elasticity with respect to first period income, the
mean second period wage and the standard deviation of the second period wage from the model economy.

And w̄PSID2 , s̄d
PSID
2 are the first two moments of the wage distribution F old(w) obtained from the PSID.

Note that γ̃ is the discrete version of

γ̃ =

∫ ∫
δκ1−ρ

2 ξ

(
e(θ1)

w2(θ2, e(θ1))

)1−ρ

f1(θ1)f2(θ2)dθ1dθ2.

40The third calibration, Case 3, considers when ρ tends to 1. From the CES functional form of the wage
function assumed above, the wage function obtained as ρ tends to 1 is

wt(θt, et) = κtθ
1

1+ξ

t e
ξ

1+ξ

t

with

εe2 =
ξ

1 + ξ
, εθ2 =

1

1 + ξ
and γ(θ2, e2) = δ

ξ

1 + ξ
.

41The values of the three moments under each calibration can be found in Appendix XXXX in table
XXXX.
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Table 1: Calibration Parameters

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Type
ρ 0.2 0.5 → 1 1.2 1.5 Exogenous
α 2 2 2 2 2 Exogenous
β 0.6 0.6 0.6 0.6 0.6 Exogenous
R 1/β 1/β 1/β 1/β 1/β Exogenous
δ 0.975 1.15 1.325 1.4 1.3 Endogenous
ξ 0.4 0.26 0.275 0.325 0.4 Endogenous
κ2 1.1 0.95 1.4 5.5 3 Endogenous

dynamic program with a two-dimensional continuous state space. It is solved by backward

induction. First, the second period value function is approximated by tensor products of

Chebyshev orthogonal polynomials evaluated at root nodes. Each node problem is solved

using an interior-point algorithm which consists of replacing the nonlinear programming

problem by a series of barrier subproblems controlled by a barrier parameter.42

For each second period node problem, a discrete-type version of (2.19) is solved where

only the downward incentive constraints linking two adjacent workers and a monotonicity

condition on consumption is assumed.43 As was shown by Hellwig (2007) both the continu-

ous type model and discrete type model are in a sense mathematically equivalent. Bastani

(2014) has demonstrated that simulations using either continuous models or discrete type

models produced similar results as long as the number of types used to represent the skill

distribution is large enough. These results lend confidence that the numerical simulations

of this paper are similar to the continuous type problem of (2.19) while taking advantage of

solving a well-behaved convex programming problem of the discrete type model.

42We use algorithm 1 in KNITRO. See http://www.artelys.com/tools/knitro_doc/ .
43I have also solved each problem without imposing the monotonicity condition and found the same

solutions. This condition is imposed as it speeds up computation time required to solve each problem and
it imposes the second order condition explicitly as a set of constraints.
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Once the second period value function is approximated, it is incorporated in the first

period problem (2.20). I imposed e1 = 0 and looked for the υ0 such that K(υ0, 0, 1) = 0.

Assuming that the first period value function is continuous, a value of υ0 big enough is chosen

so that K < 0 and a discrete version of the first period problem is solved using the chosen

υ0.44 Following this step, another value of υ0 small enough is chosen such that K > 0. I then

proceed by bisection and solved a new first period problem with an updated υ0, and this is

done until the value where K(υ0) = 0 is found. With this solution, the optimal allocation

is obtained by forward induction. The solution is then verified to be incentive compatible.

Note that for all five cases, the planner is Utilitarian, i.e. a(θ1) = 1 ∀ θ1.

4.2 Results

I start by analyzing the results of the benchmark case of ρ = 0.5, i.e. Case 2 as it features

some clear results. The upper left graphic of Figure 1 illustrates many of the important

results found in this paper. It features the first period labor wedge and the expected value of

the second period labor wedge a worker of wage θ1 will face.45 Note that except for the very

low wages and high wages in the first period, workers usually face a lower first period wedge

compared with the expected value of the second period wedge.46 In fact, in this simulation,

77.3% of the workers in the population are in that situation. That is true since a signifi-

cant mass of workers have shocks below the average value of the first period shock, i.e. 20.73$.

It is possible to see this more clearly by looking at the lower left graphic where the whole

second period optimal labor wedge schedule is graphed for workers that received the lowest,

44In the first period, no monotonicity condition is imposed, but the downward incentive constraints are
still used. The monotonicity and incentive compatibility is verified ex-post.

45In the simulations shocks go from 0.01 to 499.01. I restricted the x-axis since it allows a better look at
what happens to the average skilled individuals and lower. Note that the share of the population that has
a first period shock lower or equal to 100 is 99.6%.

46Very low skill workers face optimal first period wedges above 100% as it requires a high distortion to
discentivize labor effort as work experience is valuable in the second period.
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Figure 1: Optimal Wedges from Calibration ρ = 0.5
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the median, the mean shock and the highest shock, respectively θ1, θ
Med
1 , θMean

1 and θ̄1.47

This gives the upper and lower bound of the optimal wedge schedule in the second period

for workers of different history θ2. The workers who received the median and mean shock

in the first period should have second period labor wedges above the labor wedge they face

in the first period. In fact they should face a higher wedge then most workers in the first

period except for those at the very bottom of the distribution in period 1. In the case of the

highest shock in the first period, they will face a greater labor wedge in the second period

unless they also receive the highest shock in the second period. The upper right figure plots

the optimal savings wedge and the expected value of the second period labor wedge. These

two curves feature similar patterns as the savings wedge is used to help in separating workers

of different types in the second period.

To further illustrate the forces shaping the first period labor wedge, Figure 2 shows the

values of the three motives for each first period shock θ1 for all calibrations. The first thing

to notice is that the second-best motive appears to be dominant force out of all the three

motives. As was shown in the section above the other two motives are influenced by whether

the complementarity parameter is below or above one. The social insurance motive is pos-

itive for both calibrations where ρ is below one and negative for the calibrations where ρ

is above one. The incentive motive captured by the covariance of consumption and the

marginal benefit of work experience appears to also be prominently determined by the com-

plementarity coefficient. In Case 1, the covariance is slightly negative since ρ is smaller than

one. On the contrary, in Case 4 and 5, the covariance is positive as the complementarity

coefficient above one ensures that the marginal benefit of work experience is increasing. One

of the interesting results comes from looking at the bottom right graph. It shows that when

ρ is above one the combined value of three terms appear to be the highest at the bottom of

the distribution. This would imply that it is the calibrations where you would expect the

optimal first period labor wedge to be the lowest. This turns out not to be the case, as shown

47In the simulations these values are θ1 = 0.01$, θMed
1 = 17.01$, θMean

1 = 20.73$ and θ̄1 = 499.01$.
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Figure 2: Optimal Labor Wedge in t=1: Three Motives
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in Table 3, in fact it is much higher than the first period labor wedges in the calibration

where ρ is below one. One plausible explanation for this result could be that the higher ρ

increases the wage elasticity with respect to labor effort and therefore renders the first period

labor supply much less elastic, at least at very low levels of income, since in this situation

the payoffs to work are much greater. This explanation would be in the spirit of the results

found in Best & Kleven (2013). In fact, as illustrated by Table 2, parameter ρ appears to be

a determining factor in whether the average labor distortion is increasing with age are not

in the calibrations.

Table 2: Average Wedges in Each Period: All Cases

Parameter E0(τL(θ1)) E0(τL(θ2)) % Lower E0(τK(θ1))
ρ = 0.2 0.342 0.385 65.2% 0.151
ρ = 0.5 0.343 0.402 77.3% 0.156
ρ→ 1 0.418 0.407 72.2% 0.159
ρ = 1.2 0.502 0.401 56.6% 0.164
ρ = 1.5 0.518 0.391 61.5% 0.16
No WE 0.294 0.493 97.9% 0.196

Source: Authors’ calculations. Numbers
rounded.

The pattern of the average wedges in each period of life obtain from the optimal allocation

has important implications for tax policy as demonstrated in Farhi & Werning (2013). In

a similar manner as these authors and Stantcheva (2014b), I consider a simpler set of age-

dependent tax policies. For each case, I evaluate the welfare gains to an economy where

the age-dependent linear taxes are set at the cross-sectional average of the labor wedges and

saving wedges compared to a laissez-faire economy. The tax revenues generated in a given

period by the linear taxes are used to finance a demogrant that is given back to workers

in the same period. Also note that the linear tax on saving incomes is collected in the

second period of life. The welfare gains are measured by the constant percentage increase in

consumption (∆) offered in all periods and all state to the laissez-faire economy required to
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obtain the same expected lifetime utility given by a specific allocation, i.e.

2∑
t=1

βt−1

∫ [
u
(
(1 + ∆)cLF (θt)

)
−h
(

yLF (θt)

wt(θt, eLFt (θt−1))

)]
f 2(θ2)f 1(θ1)dθ2dθ1

=
2∑
t=1

βt−1

∫ [
u
(
c∗(θt)

)
−h
(

y∗(θt)

wt(θt, e∗t (θ
t−1))

)]
f 2(θ2)f 1(θ1)dθ2dθ1, (4.7)

where {cLF , yLF} and {c∗, y∗} are respectively the laissez-faire allocation and the considered

allocation. The laissez-faire economy used in this analysis features no constraint to saving

or borrowing, and workers can do so at gross interest rate R.

Table 3: Welfare Gains: All Cases

Case 1 Case 2 Case 3 Case 4 Case 5
ρ 0.2 0.5 → 1 1.2 1.5

% increase for Second Best 10.17% 10.35% 10.87% 12.64% 4.85%
% increase for age-dependent linear taxes 8.87% 9.32% 9,84% 10.33% 3.89%

% of simple policy in terms of Second Best 87.26% 89.99% 90.46% 81.72% 80.16%

Source: Authors’ calculations. Numbers rounded.

As it can be seen from Table 3, the age-dependent linear tax policies capture a large

portion of the welfare gains obtained from the fully history-dependent non-linear tax policy.

However, the simpler tax policies seem to be less effective when ρ is greater than one. As can

be seen from Figure 3, in both periods the labor wedges appear to be less linear than the ones

from the cases where ρ is lower than one. Also note that the difference en welfare gain for

the simulation are lower for Case 5. This maybe due to the fact that this calibration features

the highest average second period wage as can be seen in Table XX shown in Appendix C.1.

4.2.1 Changes in ρ

To explore in greater details the effects of the value of the Hicksian complementarity pa-

rameter two sets of simulations are presented. One set of simulation has the values of the
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Figure 3: All Cases
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coefficient ρ below one and the other above one. This is done because the behavior of the

wage function changes drastically as ρ goes from values below one to above one.48 The first

set of simulations take the calibrated parameters δ and ξ from Case 1, i.e. ρ = 0.2, and

increase ρ to 0.5 and 0.8. For each new change in ρ, κ2 is adjusted to match the mean of

the estimated mean of the second period wage.49 The second set of simulations takes Case

4, i.e. ρ = 1.2 as its basis and ρ is increased to 1.5 and 1.8. For the later simulations, the

parameter δ and ξ from Case 4 are kept and κ2 is adjusted to match the first moment of the

second period wage. In addition, the results obtained when there is no work experience (No

WE) in the model are reported. The second period wage in this scenario is w2 = κ2 ∗ θ2. For

this model, κ2 was calibrated again to match the estimated mean second period wage.

Looking at Figure 4 several things jump out as ρ is increased in the first set of simula-

tions, i.e. where ρ < 1. The first is how the first period wedge increase for the very low

skilled workers but decreases for workers who have skill levels greater than 10$. This shift

pushes down the average labor wedge when young by about 2%. As shown in Table 4, the

mean first period labor wedge goes from 34.2% to 32.1%.

The change in ρ also has an impact on the second period labor wedge. In the bottom left

figure of Figure 4, the average second period labor wedge schedule flattens with an increase

in ρ. Furthermore, the lowest skilled worker in the first period’s average second period labor

wedge goes from the highest in the population to one of the lowest of most workers in the

economy. However, this flattening does not really impact the cross-sectional average second

period labor wedge. A similar pattern emerges for the savings wedge schedule.

48This fact extends to the optimal labor wedge from both our analytical results of the asymptotic behavior
of the second period labor wedge and the numerical results found in Figure 2.

49As ρ increases from 0.2 to 0.8 the calibrated κ2 is decreased from 1.1 to 0.325. In the end, this slightly
reduces both the wage elasticity with respect to labor and the standard variation of the second period wage.
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Figure 4: Optimal Wedges: ρ = 0.2 with Changes in ρ
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Table 4: Average Wedges in Each Period: Using Calibration of ρ = 0.2 with Changes in ρ

Parameter E0(τL(θ1)) E0(τL(θ2)) % Lower E0(τK(θ1))
ρ = 0.2 0.342 0.385 65.2% 0.151
ρ = 0.5 0.329 0.386 72.1% 0.152
ρ = 0.8 0.321 0.386 79.5% 0.15
No WE 0.294 0.493 97.9% 0.196

Source: Authors’ calculations. Numbers rounded.

40



Figure 5: Optimal Wedges: ρ = 1.2 with Changes in ρ
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The second set of simulations, i.e. ρ > 1, gives somewhat similar results. The top left

figure shows the results of increasing ρ from 1.2 to 1.5. It increases the optimal first period

labor wedge for workers with skills lower than the median skill shock but also lowers it for

a section of mid to high skill range. This change increases the cross-sectional average labor

wedge of the young workers as can be seen in Table 5.

The second period labor wedge follows a similar pattern as the first set of simulations

with ρ < 1. Increasing ρ lowers the average second period labor wedge the first period low
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skill shock levels will face in the second period. But at around first period shock of 10$, the

average labor wedge increases for much of the rest of the distribution. But as mentioned

above, a higher value of ρ increases the wage elasticity with respect to labor effort at the

bottom of the distribution which may explain the reason why the cross-sectional average

appear to be higher in the first period of life compared to the one in the second period.

It is also possible to see that the increase in ρ can be seen to lower the tail of the second

period labor wedge of the median shock worker. This result is inline with the analytical

result derived above.

One thing to notice is that in both sets of simulations the relationship between the

cross-sectional averages of each life period is not altered. For simulations with ρ < 1, the

cross-sectional average of the labor wedge is smaller when young than when old. And for

those with ρ > 1, the cross-sectional average of the labor wedge is greater when young than

when old.

Table 5: Average Wedges in Each Period: Using Calibration of ρ = 1.2 with Changes in ρ

Parameter E0(τL(θ1)) E0(τL(θ2)) % Lower E0(τK(θ1))
ρ = 1.2 0.502 0.401 56.6% 0.164
ρ = 1.5 0.569 0.407 60.9% 0.171
ρ = 1.8 0.637 0.406 60.8% 0.175
No WE 0.294 0.493 97.9% 0.196

Source: Authors’ calculations. Numbers rounded.

4.2.2 Changes in δ

The next set of simulations investigates the role of the parameter that influences how income

is transformed into work experience. It is the parameter that more directly influences the

elasticity of future wages with respect to labor effort. Contrary to changes in ρ its effect is
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felt by all workers not more keenly felt by specific parts of the distribution. Taking Case 2

and Case 4 as the basis for the simulations, the value of δ is lowered for each set of simula-

tions.50 For each reduction of δ an extra calibration is done where κ2 is adjusted such that

the mean second period wage matches the estimated mean of the second period wage.51In

Case 2 the reduction in δ decreases radically the average wage elasticity with respect to labor

effort and slightly increases the variation of the second period wage. Whereas in Case 4 the

reduction in δ decreases slightly the average wage elasticity with respect to labor effort but

slightly decreases the variation of the second period wage.

Results from decreasing δ can be observed in Figure 6 and Table 6. I find that the lower

δ is, and lower the elasticity of the second period wage is with respect to labor, the lower

the optimal wedge schedule in the first period in both sets of simulations. From the top and

bottom left figures, it can be seen that the effect is more pronounced for the low skilled.

The effect is even more drastic for simulations based on Case 4. It is such that the result of

higher distortions for the young compared to the old is reversed. The results here are in line

with the numerical results of Best & Kleven (2013) who finds that a decrease in γ usually

leads to lower labor distortions for the young. However in contrast with their result, and

probably due to the risky nature of the environment considered in this paper it is possible

for young workers to be taxed less than older workers.

What happens in the second period of life differs in both sets of simulation. As can be

seen in both Figure 6 and Table 6, labor wedges are increased in the case where ρ = 0.5

but decrease in case where ρ = 1.2. This is most likely due to the change in riskiness of

the second period wage brought about by the change in parameter δ. As mentioned above,

in the simulations based on Case 2, the variation of the second period wage is increased

and hence the planner is required to offer more insurance and thus needs to distort labor

more. However, this is not the case for simulations with ρ = 1.2 and the decrease in δ is also

50Recall that δ = 1.15 is used in Case 2 and δ = 1.4 in Case 4.
51The impact of those changes on a model economy can be seen in Table XX1 found in Appendix C.1.
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Figure 6: Optimal Wedges: ρ = 0.5 and ρ = 1.2 with Changes in δ
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accompanied by a decrease in variation of the second period wage and thus less reasons to

distort labor. Both of these effects are minor compared to the strong effect the change in δ

has on the first period labor wedge.
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Table 6: Average Wedges in Each Period: ρ = 0.5 and ρ = 1.2 with Changes in δ

Parameter E0(τL(θ1)) E0(τL(θ2)) % Lower E0(τK(θ1))
ρ = 0.5
δ = 1.15 0.343 0.402 77.3% 0.156
δ = 0.8 0.29 0.438 93% 0.175
δ = 0.4 0.286 0.464 96.2% 0.186
ρ = 1.2
δ = 1.4 0.502 0.401 56.6% 0.164
δ = 1.1 0.347 0.395 85.7% 0.151
δ = 0.7 0.297 0.381 93.8% 0.158
No WE 0.294 0.493 97.9% 0.196

Source: Authors’ calculations. Numbers rounded.

4.2.3 Changes in σ

This set of simulations focuses on the change in the riskiness of the second period.52 This

is done by changing the value of the scale parameter σ of the log-normal distribution of the

second period distribution of shocks. The distribution of shocks is no longer identical in

both period. The first period distribution is the same as in all other simulations above, i.e.

F 1(θ) = F young(θ). The second period distribution will be a modification of F young(θ) as the

new scale parameter σ is changed to obtain F 2(θ). An increase in σ results in an increase in

the variance of the shock and hence the variance of the second period wage for a given level

of work experience. These changes will have an impact on the mean of the shock but not

on the median shock. Again, Case 2 is used for most of the parameters but κ2 is changed to

keep the mean of the second period wage matching the same as the above simulations.5354

Figure 9 and Table 7 illustrates the changes for the first period labor wedge as σ, i.e.

52In this paper a change in σ has an impact on the variance and the kurtosis of the distribution. See
Golosov et al. (2015) for a discussion on the effects of a change of the highest σ of a mixture of lognormals.

53Note that σ = 0.67 simulation is the same found in Figure 1.
54Simulations using Case 4 were also run and the results are very similar to the ones found with Case 2.

I report these simulations in Figure XX2 and Table XX2 in Appendix C.1.
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the riskiness, is increased. The labor wedge slightly increases and that is reflected by the

increase of 5 percentage points of the average first period labor wedge. The most important

change happens in the second period of life. This is in line with the analytical results that

showed that an increase in σ, when the distribution of shocks is log-normal, results in an

increase in the second period labor wedge. As shown in Table 7, the mean second period

labor wedge increases by roughly 16 percentage points as σ is taken from 0.47 to 0.77. As

risk increases the difference between the average labor distortion when young and when old

changes as well.55 In the cases where σ is below 67, the result obtained that the average

labor wedges are lower when young is completely reversed. In fact even the result where a

majority of workers faces lower labor distortion when young also disappears as shown in the

simulation with σ = 0.47. Therefore uncertainty is an important explanation for the the age

structure of taxation. Furthermore, as an increase in σ implies a greater labor distortions in

the second period, the savings wedge is also increased to facilitate the separation of types.

Table 7: Average Wedges in Each Period: ρ = 0.5 with Changes in t=2’s σ

Parameter E0(τL(θ1)) E0(τL(θ2)) % Lower E0(τK(θ1))
σ = 0.47 0.381 0.282 0% 0.115
σ = 0.57 0.361 0.346 48.9% 0.138
σ = 0.67 0.343 0.402 77.3% 0.156
σ = 0.77 0.331 0.442 89.6% 0.167

Source: Authors’ calculations. Numbers rounded.

4.2.4 Changes in Pareto weights

So far all simulations have been made with the assumption that the planner’s preferences

where utilitarian. This final set of simulations considers changes to the planner’s preferences

55It is quite possible that the log-normal distribution used in the numerical simulations of this paper
overestimates the risk workers face in the second period of life.
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Figure 7: Optimal Wedges: ρ = 0.5 with Changes in t=2’s σ
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using different Pareto weights. Let the functional form for the Pareto weights be

a(θ1) =
θ−ζ1

θ̄∫
θ

θ−ζ1 f 1(θ1)dθ1

,

where ζ ≥ 0. Here the greater the value of ζ the more weight the lower skilled workers

have. One could interpret this parameter as the planner’s redistributive taste. This social

welfare preference violates the anonymity axiom, nonetheless it is useful in obtaining some in-

formation on labor and savings distortions under different redistributive taste of the planner.

Again, Case 2 is used for the simulations. There is no need to change any parameters of

the wage function as only the preferences of the planner are changed.56 The simulations con-

siders an increase in ζ from 0.2 to 1. The shape of the Pareto weight function under different

values of ζ can be seen in the top left graphic in Figure 8. From both Figure 8 and Table 8,

it is possible to see the effect the change in ζ has on the first period labor wedge. This result

can be understood by looking at 3.5 from Proposition 1. Notice that a(θ1) only appears in

the first period labor wedge formula. By increasing ζ, the value of a(θ1) decreases, except for

low values of θ1, and thus it pushes upward the value of the optimal labor wedge as giving

a dollar to higher skilled workers is valued less and less by the planner. Also, due to the

value of acquiring work experience in the future, the labor supply elasticity is also reduced in

the first period of life. Therefore “taxing” more heavily in the first period to finance an in-

creasing need to redistribute to the lower skilled worker lowers the cost of this redistribution.

The effect on the second period labor wedge is marginal and it only slightly increases

with greater values of ζ. The planner seeks to redistribute in the first period and only distort

56Simulations were also made for Case 4 and are not reported here as they are similar in qualitative
information. They can be found in Appendix C.1.
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Figure 8: Optimal Wedges: ρ = 0.5 with Changes in ζ
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labor in the second period to provide insurance. Since risk hasn’t changed there aren’t any

more motivation for the planner to distort the second period labor market even more than

in the utilitarian case. Because the second period labor wedge isn’t affected and the first

period labor wedge is pushed up drastically, the result of the increasing pattern of distortion

with age no longer holds. In fact, as the planner’s preference change the amount of workers

that would face higher distortions in the future go from 77.3% to 0%.
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Table 8: Average Wedges in Each Period: ρ = 0.5 with Changes in ζ

Parameter E0(τL(θ1)) E0(τL(θ2)) % Lower E0(τK(θ1))
Utilitarian 0.343 0.402 77.3% 0.156
ζ = 0.2 0.451 0.404 0% 0.157
ζ = 0.5 0.574 0.408 0% 0.16
ζ = 1 0.706 0.413 0% 0.163

Source: Authors’ calculations. Numbers rounded.

5 Conclusion

This paper studies the design of an optimal dynamic tax system when wages depend on

both accumulated work experience and a stochastic shock. The analysis is made under the

assumption that work experience is observable to the planner. Using a first-order approach

to solve the planner’s problem, I find that in addition to standard considerations found in

the standard optimal taxation, the first period labor tax is a balance of three motives that

captures the added effects of having wages be a function of risk and work experience.

The main contribution of the paper is to highlight the importance of the parameter

determining the complementarity between the stochastic shock and the accumulated work

experience on the age structure of the optimal tax system. I find that a majority of workers,

in numerical simulations calibrated to US data, would expect to face a higher marginal labor

income tax when old compared to the one they faced when young. Nevertheless, whether

the cross-sectional average of the marginal labor income tax increases or decreases with age

depends on the complementarity parameter. A parameter value smaller than one leads to

increasing average labor taxes with age whereas a parameter value above one leads to declin-

ing average labor taxes with age. The above results illustrate the importance of obtaining

estimates of the value of the complementarity parameter if policy makers are considering tax

reforms towards an age-dependent tax system.

50



In future work, I plan on relaxing the assumption of observable work experience accu-

mulation and consider the case where work experience is a function of first period shock and

labor effort. This would allow for different types of job opportunities and rewards to be part

of the model. However, this comes at the cost of losing the common knowledge of preference

assumption as work experience becomes unobservable. In the model above, work experience

in one profession is in a way perfectly transferable to another profession. Considering the

impact of labor income taxation on job-specific work experience may relax the incentive

constraints on workers that decide to change occupation in response to labor income taxes.
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Kremer, M. (2002). Should taxes be independent of age. Mimeo.

OECD (2004). Improving skills for more and better jobs: Does training make a difference?

Discussion Paper, OECD Employment Outlook.

Stantcheva, S. (2014b). Optimal taxation and human capital policies over the life cycle.

Working Paper.

Stantcheva, S. (December 2014a). Learning and (or) doing: Human capital investments and

optimal taxation. Working Paper.

53



Stiglitz, J. (1982). Self-selection and pareto efficient taxation. Journal of Public Economics,

17, 213–240.

Storesletten, K., Telmer, C., & Yaron, A. (2004). Consumption and risk sharing over the

life cycle. Journal of Monetary Economics, 51(3), 609ñ633.
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Appendix

A The Hamiltonians

First, use the first constraint in the first period problem and manipulate it such that

c(θ) = u−1

(
ω(θ) + h

(
y(θ)

w1(θ, e1)

)
− βυ(θ)

)
.

The Hamiltonian for period t = 1 is:

[
u−1

(
ω(θ) + h

(
y(θ)

w1(θ, e1)

)
− βυ(θ)

)
− y(θ) +

1

R
K(υ(θ), e(θ), 2)

]
f 1(θ)

+ λ1[υ0 − a(θ)ω(θ)f 1(θ)] + µ(θ)

h
′
( y(θ)

w1(θ, e1)

)
y(θ)

[w1(θ, e1)]2
∂w1(θ, e1)

∂θ1

 ,
where

e(θ) = φ(y(θ)) + e1,

and the Hamiltonian for period t = 2 is

[
u−1

(
ω(θ) + h

(
y(θ)

w2(θ, e2)

))
− y(θ)

]
f 2(θ)

+ λ2[υ − ω(θ)f 2(θ)] + µ(θ)

h
′
( y(θ)

w2(θ, e2)

)
y(θ)

[w2(θ, e2)]2
∂w2(θ, e2)

∂θ2

 .
Furthermore using the envelope theorem we get:

Kυ(υ, e2, 2) = λ2,
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and so from the point of view of the first period, we have:

Kυ(υ(θ), e(θ), 2) = λ(θ).

The FOCs for the second period problem are:

y(θ):

−1 +

h′
(

y(θ)

w2(θ, e2)

)
u′(c(θ))w2(θ, e2)

f 2(θ) + µ(θ)

h
′′
(

y(θ)

w2(θ, e2)

)
y(θ)

[w2(θ, e2)]3
+

h′
(

y(θ)

w2(θ, e2)

)
[w2(θ, e2)]2

∂w2(θ, e2)

∂θ
= 0.

(A.1)

The law of motion for the co-state variable ω(θ):

− µ̇(θ) =
f 2(θ)

u′(c(θ))
− λ2f

2(θ). (A.2)

The FOCS for the first period are:

y(θ):

[
−1 +

h′(l(θ))

u′(c(θ))w1(θ, e1)
+

1

R
φ′(y(θ))

∂K

∂e(θ)

]
f 1(θ) + µ(θ)

[
h′′(l(θ)) l(θ)

[w1(θ, e1)]2
+

h′(l(θ))

[w1(θ, e1)]2

]
∂w1(θ, e1)

∂θ
= 0,

(A.3)
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where

∂K

∂e(θ)
=−

∫ h′
(

y(θ)

w2(θ, e2)

)
y(θ)

u′(c(θ))[w2(θ, e2)]2
∂w2(θ, e2)

∂e
f 2(θ)dθ

−
∫

µ(θ)

f 2(θ)

h
′′
(

y(θ)

w2(θ, e2)

)
y(θ)

[w2(θ, e2)]3
+

h′
(

y(θ)

w2(θ, e2)

)
[w2(θ, e2)]2

∂w2(θ, e2)

∂θ

∂w2(θ, e2)

∂e(θ)

y(θ)

w2(θ, e2)
f 2(θ)dθ

−
∫

µ(θ)

f 2(θ)

h′
(

y(θ)

w2(θ, e2)

)
y(θ)

[w2(θ, e2)]3
∂w2(θ, e2)

∂θ

∂w2(θ, e2)

∂e(θ)

1−

∂2w2(θ, e2)

∂θ∂e(θ)

∂w2(θ, e2)

∂θ

∂w2(θ, e2)

∂e(θ)

 f 2(θ)dθ.

(A.4)

υ(θ):

− β

u′(c(θ))
+

1

R

∂K

∂υ(θ)
= 0, (A.5)

The law of motion for the co-state variable ω(θ):

− µ̇(θ) =
f 1(θ)

u′(c(θ))
− λ1a(θ)f 1(θ). (A.6)

A.1 Labor wedge

A.1.1 Labor wedge in Period 2

Starting for t=2, using the FOC for y(θ2) and rearranging, we get:

1− h′(l(θ2)

u′(c(θ2))w2(θ2, e2)
=

µ(θ2)

f 2(θ2)

h′(l(θ2))

[w2(θ2, e2)]2

[
1 +

h′′
(
l(θ2)

)
l(θ1)

h′(l(θ2))

]
∂w2(θ2, e2)

∂θ
. (A.7)
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Using the definition our elasticity measure and

εθt ≡
∂wt(θt, e(θ

t−1))

∂θt

θt
wt(θt, e(θt−1))

,

we obtain the formula (3.6) from Proposition 1.

To write the optimal second period wedge formula (3.6) into the ABC format use the

definition from above, and see that

µ(θ2)u′(c(θ2)) =

∫ θ̄

θ2

(
u′(c(θ2))

u′(c(x))

)
[1− λ2u

′(c(x))]f 2(x)dx,

and

u′(c(θ))

u′(c(x))
= exp

(
ln
u′(c(θ))

u′(c(x))

)
= exp

(
−
∫ x

θ

du′(c(x̃))

u′(c(x̃))

)
= exp

(
−
∫ x

θ

u′′(c(x̃))dc(x̃)

u′(c(x̃))

)
= exp

(
−
∫ x

θ

u′′(c(x̃))c(x̃)

u′(c(x̃))

ċ(x̃)

c(x̃)
dx̃

)
= exp

(∫ x

θ

η(x̃)
ċ(x̃)

c(x̃)
dx̃

)
.

Multiplying on both sides by (1− F 2(θ))/(1− F 2(θ)) (3.6) and using the new definitions, I

obtain

τ ∗L(θ2)

1− τ ∗L(θ2)
= (1 + α(θ2))εθ2

[
1− F 2(θ2)

θ2f 2(θ2)

] ∫ θ̄
θ2

exp
(∫ x

θ
η(x̃) ċ(x̃)

c(x̃)
dx̃
)

[1− λ2u
′(c(x̃))]f 2(x)dx

1− F 2(θ2)
.
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A.1.2 Labor wedge in Period 1

Using the FOC for y(θ1) and rearranging, we get:

1− h′(l(θ1)

u′(c(θ1))w1(θ1, e1)
− 1

R
φ′(y(θ1))

∂K

∂e(θ1)
=

µ(θ1)

f 1(θ1)

h′(l(θ1))

[w1(θ1, e1)]2

[
1 +

h′′
(
l(θ1)

)
l(θ1)

h′(l(θ1))

]
∂w1(θ1, e1)

∂θ1

.

(A.8)

Notice that

∫
h′
(
l(θ2
)
l(θ2)

u′(c(θ2))w2(θ2, e2)

∂w2(θ2, e2)

∂e
f 2(θ2)dθ2 =

∫
1

u′(c(θ2))
f 2(θ2)dθ2

×
∫
h′
(
l(θ2
)
l(θ2)

w2(θ2, e2)

∂w2(θ2, e2)

∂e
f 2(θ2)dθ2

+ Cov

(
1

u′(c(θ2))
,
h′
(
l(θ2
)
l(θ2)

w2(θ2, e2)

∂w2(θ2, e2)

∂e

)
,

and using the result from the intertemporal wedge, we have:

∫
h′
(
l(θ2
)
l(θ2)

u′(c(θ2))w2(θ2, e2)

∂w2(θ2, e2)

∂e
f 2(θ2)dθ2 =

Rβ

u′(c(θ1))

∫
h′
(
l(θ2
)
l(θ2)

w2(θ2, e2)

∂w2(θ2, e2)

∂e
f 2(θ2)dθ2

+ Cov

(
1

u′(c(θ2))
,
h′
(
l(θ2
)
l(θ2)

w2(θ2, e2)

∂w2(θ2, e2)

∂e

)
.
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Reinserting this in ∂K/∂e, and using the rewritten FOC, we have:

1− h′(l(θ1)

u′(c(θ1))w1(θ1, e1)
+ β

φ′(y(θ1)

u′(c(θ1))

∫
h′
(
l(θ2
)
l(θ2)

w2(θ2, e2)

∂w2(θ2, e2)

∂e
f 2(θ2)dθ2 =

µ(θ1)

f 1(θ1)

h′(l(θ1))

[w1(θ1, e1)]2

[
1 +

h′′
(
l(θ1)

)
l(θ1)

h′(l(θ1))

]
∂w1(θ1, e1)

∂θ1

− φ′(y(θ1))

R

{
Cov

(
1

u′(c(θ2))
,
h′
(
l(θ2
)
l(θ2)

w2(θ2, e2)

∂w2(θ2, e2)

∂e

)
+

∫
τL(θ2)

∂w2(θ2, e2)

∂e
l(θ2)f 2(θ2)dθ2

+

∫
µ(θ2)

f 2(θ2)

h′
(
l(θ2)

)
l(θ2)

[w2(θ2, e2)]2
∂w2(θ2, e2)

∂θ

∂w2(θ2, e2)

∂e(θ1)

1−

∂2w2(θ2, e2)

∂θ∂e(θ1)

∂w2(θ2, e2)

∂θ2

∂w2(θ2, e2)

∂e(θ1)

 f 2(θ2)dθ2

 .

(A.9)

Using the definitions of the Hicksian complementarity, the labor elasticity and the wage

elasticity, we obtain the results of Proposition 1.

A.2 Intertemporal Wedge

Using the FOC on ω(θ) for period t=2 and the following boundary conditions:

lim
θ→θ

µ(θ) = 0 and lim
θ→θ̄

µ(θ) = 0,

we get

µ(θ) =

θ̄∫
θ

[
1

u′(c(θ))
− λ2

]
f 2(θ)dθ,

and
θ̄∫
θ

1

u′(c(θ))
f 2(θ)dθ = λ2.
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Using the FOC on υ(θ) in t=1 and the envelope result from above, we have

λ(θ1) =
βR

u′(c(θ1))
.

Combining both we obtain the inverse Euler equation:

1

u′(c(θ1))
=

1

Rβ

θ̄∫
θ

1

u′(c(θ2))
f 2(θ2)dθ2.

A.3 Proof of Corollary 2.a and 2.b

The proof of Corollary 2.a and 2.b follows the proof of Corollary 1 in Golosov et al. (2015).57

Properties of the log-normal distribution: Use the fact that

θf 2′(θ)

f 2(θ)
= 1 +

ln θ − µ
σ2

,

and by L’Hôpital’s rule, it is possible to obtain

lim
θ→∞

1− F 2(θ)

θf 2(θ)
= lim

θ→∞

−1

θf 2′(θ)/f 2(θ) + 1
= 0,

lim
θ→∞

(1− F 2(θ))(ln θ − µ)/σ2

θf 2(θ)
= lim

θ→∞

(ln θ − µ)/σ2 + (1− F 2(θ))/(θf 2(θ)σ2)

θf 2′(θ)/f 2(θ) + 1
= 1.

From this the following result follows: 1−F 2(θ)
θf2(θ)

∼ σ2

ln θ−µ .

Proof of Corollary 2.a

Using Assumption 2, and also specifically the fact that both c2(θ)
y2(θ)

and ċ2(θ)/c2(θ)
ẏ2(θ)/y2(θ)

have finite

57However, I do not prove every lemma as I do not require all of them for the proof of Corollary 2.a and
2.b.
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limits, it follows that there exist a limit for limθ→∞
ċ2(θ)
ẏ2(θ)

since

ċ2(θ)

ẏ2(θ)
=
ċ2(θ)/c2(θ)

ẏ2(θ)/y2(θ)

c2(θ)

y2(θ)
. (A.10)

Also note that c2(θ), y2(θ) → ∞ as θ → ∞ must hold. If this was not the case, it would

imply that 1 − τ 2
L(θ) = h′(y2(θ)/w2(θ,e))

u′(c(θ))w2(θ,e)
→ 0 as θ goes to infinity which would contradict the

assumption that
τ2L(θ)

1−τ2L(θ)
has a finite limit.

Using L’Hôpital’s rule

lim
θ→∞

c2(θ)

y2(θ)
= lim

θ→∞

ċ2(θ)

ẏ2(θ)
,

and using (A.10) I obtain

1 =

lim
θ→∞

ċ2(θ)θ

c2(θ)

lim
θ→∞

ẏ2(θ)θ

y2(θ)

=

lim
θ→∞

ċ2(θ)θ

c2(θ)

lim
θ→∞

εθ2(θ, e2) +
l̇2(θ)θ

l2(θ)

. (A.11)

Using the fact that limθ→∞ τ
2
L(θ) = τ̄ 2

L < 1, and using (1 − τ̄ 2
L) = h′(l2(θ)

u′(c(θ))w2(θ,e)
, and by

L’Hôpital’s rule it is possible to get the following result

1 =

lim
θ→∞

h′(l2(θ)

u′(c(θ))w2(θ, e)

1− τ̄ 2
L

=
1

1− τ̄ 2
L

lim
θ→∞

h′′(l2(θ)l̇(θ)

u′′(c(θ))ċ(θ)w2(θ, e) + u′(c(θ))∂w2

∂θ

,

=
1

1− τ̄ 2
L

lim
θ→∞

h′(l2(θ)

u′(c(θ))w2(θ, e)

h′′(l2(θ)l̇(θ)
h′(l2(θ))

u′′(c(θ))ċ(θ)
u′(c2(θ))

+ ∂w2

∂θ
1

w2(θ,2)

=
1

1− τ̄ 2
L

lim
θ→∞

h′(l2(θ)

u′(c(θ))w2(θ, e)
lim
θ→∞

α(θ) l̇2(θ)θ
l2(θ)

εθ2(θ, e2)− η(θ) ċ2(θ)θ
c2(θ)

= lim
θ→∞

α(θ) l̇2(θ)θ
l2(θ)

εθ2(θ, e2)− η(θ) ċ2(θ)θ
c2(θ)

. (A.12)

From the above assumptions let α(θ) → ᾱ, η(θ) → η̄, and εθ2(θ, e2) → ε̄θ2 as θ → ∞, then
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if limθ→∞
ċ2(θ)θ
c2(θ)

and limθ→∞
l̇2(θ)θ
l2(θ)

are finite (A.11) and (A.12) can be used to obtain

lim
θ→∞

ċ2(θ)θ

c2(θ)
= lim

θ→∞

(
1 + α(θ)

η(θ) + α(θ)

)
εθ2(θ, e2) =

(
1 + ᾱ

η̄ + ᾱ

)
ε̄θ2, (A.13)

lim
θ→∞

l̇2(θ)θ

l2(θ)
= lim

θ→∞

(
1− η(θ)

η(θ) + α(θ)

)
εθ2(θ, e2) =

(
1 + η̄

η̄ + ᾱ

)
ε̄θ2. (A.14)

Using assumption 2 it can be shown that these limits are finite. If either limθ→∞
ċ2(θ)θ
c2(θ)

or

limθ→∞
l̇2(θ)θ
l2(θ)

are infinite, (A.11) would imply that

lim
θ→∞

ċ2(θ)θ

c2(θ)

l̇2(θ)θ

l2(θ)

= 1.

Suppose that limθ→∞

∣∣∣ l̇2(θ)θ
l2(θ)

∣∣∣ =∞, then by (A.12) this result follows

1 = lim
θ→∞

α(θ) l̇2(θ)θ
l2(θ)

εθ2(θ, e2)− η(θ) ċ2(θ)θ
c2(θ)

= lim
θ→∞

α(θ)
εθ2(θ,e2)
ċ2(θ)θ
c2(θ)

− η(θ)

l̇2(θ)θ
l2(θ)

ċ2(θ)θ
c2(θ)

= − ᾱ
η̄
< 0

which is a contradiction. This result also relies on the fact that εθ2(θ, e2) was assumed to

have a finite limit.

Using the result on the limit of limθ→∞
ċ2(θ)θ
c2(θ)

the behavior of C(θ) can be characterized

as θ → ∞. First define q(x̃) ≡ η(x̃) ċ2(x̃)x̃
c2(x̃)

, and rewrite C(θ) with the assumption that the

distribution is unbounded:

C(θ) =
exp

(
−
∫ θ

0
q(x̃)
x̃
dx̃
) ∫∞

θ
exp

(∫ x
0
q(x̃)
x̃
dx̃
)

[1− λ2u
′(c2(x))]f 2(x)dx

1− F 2(θ)
.
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By L’Hôpital’s rule

lim
θ→∞

C(θ) = lim
θ→∞

− exp
(
−
∫ θ

0
q(x̃)
x̃
dx̃
)
q(θ)
θ

∫∞
θ

exp
(∫ x

0
q(x̃)
x̃
dx̃
)

[1− λ2u
′(c2(x))]f 2(x)dx

−f 2(θ)

+
− exp

(
−
∫ θ

0
q(x̃)
x̃
dx̃
)

exp
(
−
∫ θ

0
q(x̃)
x̃
dx̃
)

[1− λ2u
′(c(θ))]f 2(θ)

−f 2(θ)

= lim
θ→∞

[1− λ2u
′(c(θ))] + lim

θ→∞

q(θ)C(θ)[1− F 2(θ)]

θf 2(θ)
.

And since, c2(θ)→∞, u′(c2(θ))→ 0 and thus

lim
θ→∞

C(θ) = 1 + lim
θ→∞

q(θ)
τ 2
L(θ)

1− τ 2
L(θ)

1

A(θ)
.

The above assumptions, (A.13) and the above result are used to obtain

lim
θ→∞

C(θ) = 1 +
η̄

(1 + ᾱ)ε̄θ2

(
1 + ᾱ

η̄ + ᾱ

)
ε̄θ2 lim

θ→∞

τ 2
L(θ)

1− τ 2
L(θ)

.

Because limθ→∞
τ2L(θ)

1−τ2L(θ)
was assumed to have a finite limit, C(θ) must have a finite limit.

From assumption 2, A(θ) also has a finite limit, using the above result on C(θ) and the

property of the log-normal distribution such that limθ→∞
1−F 2(θ)
θf2(θ)

= 0, which implies that

B(θ)→ 0 as θ →∞, then this results follows

lim
θ→∞

τ 2
L(θ)

1− τ 2
L(θ)

= lim
θ→∞

A(θ)B(θ)C(θ) = 0.

The last result implies that with the log-normal distribution limθ→∞C(θ) = 1. Now

consider limθ→∞
τ2L(θ)

1−τ2L(θ)
ln θ−µ
σ2 ,

lim
θ→∞

τ 2
L(θ)

1− τ 2
L(θ)

ln θ − µ
σ2

= lim
θ→∞

(1 + α(θ))εθ2(θ, e2) lim
θ→∞

1− F 2(θ)

θf 2(θ)

ln θ − µ
σ2

lim
θ→∞

C(θ),

=(1 + ᾱ)ε̄θ2 (A.15)
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From the results above I get

τ 2
L(θ)

1− τ 2
L(θ)

∼ (1 + ᾱ)ε̄θ2

(
σ2

ln θ − µ

)
as θ →∞.

Proof of Corollary 2.b

The proof of Corollary 2.b is almost identical to the one of Corollary 2.a. Using Assump-

tion 2 and the wage function

w2(θ, e2) = (θ1−ρ + e1−ρ
2 )

1
1−ρ ,

I get

lim
θ→∞

ċ2(θ)θ

c2(θ)
= lim

θ→∞

(
1 + α(θ)

η(θ) + α(θ)

)
εθ2(θ, e2) = lim

θ→∞

(
1 + α(θ)

η(θ) + α(θ)

)(
w2(θ, e2)

θ

)ρ−1

,

(A.16)

lim
θ→∞

l̇2(θ)θ

l2(θ)
= lim

θ→∞

(
1− η(θ)

η(θ) + α(θ)

)
εθ2(θ, e2) = lim

θ→∞

(
1− η(θ)

η(θ) + α(θ)

)(
w2(θ, e2)

θ

)ρ−1

, (A.17)

since with the above CES function the wage elasticity with respect to shock is εθ2 =(
w2(θ,e2)

θ

)ρ−1

. A particularity of this function is that whenever ρ > 1 the limit of this elas-

ticity is zero. This implies that both limθ→∞
ċ2(θ)θ
c2(θ)

and limθ→∞
l̇2(θ)θ
l2(θ)

have a finite limit of zero.

In this situation, the limit of C(θ) can still be written in the following way:

lim
θ→∞

C(θ) = 1 +

(
η̄

η̄ + ᾱ

)
lim
θ→∞

τ 2
L(θ)

1− τ 2
L(θ)

,

since

lim
θ→∞

ċ2(θ)θ
c2(θ)

A(θ)
= lim

θ→∞

1

η(θ) + α(θ)
.
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The limit of C(θ) is still finite by the assumption on the finite limit of
τ2L(θ)

1−τ2L(θ)
. However, the

asymptotic properties of A(θ) have changed since the wage elasticity goes to zero. This also

does not change the following result

lim
θ→∞

τ 2
L(θ)

1− τ 2
L(θ)

= lim
θ→∞

A(θ)B(θ)C(θ) = 0,

but it changes the result on limθ→∞
τ2L(θ)

1−τ2L(θ)
ln θ−µ
σ2 ,

lim
θ→∞

τ 2
L(θ)

1− τ 2
L(θ)

ln θ − µ
σ2

= lim
θ→∞

(1 + α(θ))εθ2(θ, e2) lim
θ→∞

1− F 2(θ)

θf 2(θ)

ln θ − µ
σ2

lim
θ→∞

C(θ),

=0× 1× 1 = 0.

Notice that with the CES function with ρ > 1, this holds

lim
θ→∞

εθ2(θ, e2)θρ−1 = eρ−1
2 .

Now consider

lim
θ→∞

τ 2
L(θ)

1− τ 2
L(θ)

θρ−1(ln θ − µ)

σ2
= lim

θ→∞
(1 + α(θ))εθ2(θ, e2)θρ−1 lim

θ→∞

1− F 2(θ)

θf 2(θ)

ln θ − µ
σ2

lim
θ→∞

C(θ),

= (1 + ᾱ)eρ−1
2 . (A.18)

Using this result

τ 2
L(θ)

1− τ 2
L(θ)

∼ (1 + ᾱ)
(e2

θ

)ρ−1
(

σ2

ln θ − µ

)
as θ →∞.

B Implementation: No savings in equilibrium

In this section, I consider the decentralization of the optimal allocation through a tax system.

We follow Werning (2011) methodology which augments any given mechanism and allows a
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choice over savings subject to a nonlinear savings tax. I also follow Kapicka & Neira (2014)

where the the design of the tax on savings is first considered and than proceed to incorporate

this tax in the full tax system.

Recall that the equilibrium values ω(θ1) and ω(θ2) from an incentive compatible allocation

{c, y} satisfy

ω(θ1) = u(c(θ1))−h
(

y(θ1)

w1(θ1, e1)

)
+ β

∫
ω(θ1, e(θ1), θ2)f 2(θ2)dθ2,

ω(θ2) = u(c(θ2))−h
(

y(θ2)

w2(θ2, e(θ1))

)
.

And as above, let the worker’s optimization problem be

ωr(θ1) = max
r1

{
u(c(r1))−h

(
y(r1)

w1(θ1, e1)

)
+ β

∫
ωσ

r

(r1, e(r1), θ2)f 2(θ2)dθ2

}
,

ωr(r1, θ2) = max
r2

{
u(c(r2))−h

(
y(r2)

w2(θ2, e(r1))

)}
,

where r1 and r2 are the reports of their types given in each period to the planner. Therefore

incentive compatibility implies

ωr(θ1) = ω(θ1),

ωr(r1, θ2) = ω(r1, θ2) = ω(θ2).

So, for any incentive compatible allocation {c, y}, consider these two budget constraints

c̃1 +M(x2, r
1) ≤ c(r1),

c̃2 ≤ x2 + c(r2),

where x2 is after-interest savings and M(x2, σ
1) is referred to as a tax function based on
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after-interest savings and the worker’s report of his type r1 in period 1. Again, the goal is

to augment the direct mechanism by allowing the worker to save. If I suppose that the net

interest rate is i then M(x2, r
1) − x2/(1 + i) is a nonlinear tax on savings in period 1. An

important part is that M(0, r1) = 0 so that a worker that decides not to save pays no taxes.

Under the augmented mechanism, the worker’s problem in the first and second period is:

V (x1, e1, θ1) = max
r1,x2

{
u
(
c(r1)−M(x2, r

1)
)
−h
(

y(r1)

w1(θ1, e1)

)
+ β

∫
V (x2, r

1, e(r1), θ2)f 2(θ2)dθ2

}
,

V (x2, r
1, e(r1), θ2) = max

r2

{
u
(
c(r2) + x2

)
−h
(

y(r2)

w2(θ2, e(r1))

)}
,

where x1 = 0. Now define W (x2, r
1, θ1) has the right hand side of the first equation above,

i.e.:

W (x2, r
1, θ1) ≡ u

(
c(r1)−M(x2, r

1)
)
−h
(

y(r1)

w1(θ1, e1)

)
+ β

∫
V (x2, r

1, e(r1), θ2)f 2(θ2)dθ2.

Now I impose that

W (x2, r
1, θ1) ≤ω(θ1) ∀x2, r

1, θ1

W (0, θ1, θ1) =ω(θ1) ∀θ1.

The inequality is there to ensure that in period 1, it is optimal for the individual to report

truthfully, r1 = θ1 and not save, x2 = 0. The equality is there to make sure that this

mechanism delivers the same utility as the original mechanism. Imposing these inequalities

is equivalent to imposing

M(x2, r
1) ≥M∗(x2, r

1),
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where

M∗(x2, r
1) ≡ max

θ1
M̃∗(x2, r

1, θ1),

and

M̃∗(x2, r
1, θ1) ≡ c(r1)−u−1

(
ω(θ1) +h

(
y(r1)

w1(θ1, e1)

)
− β

∫
V (x2, r

1, e(r1), θ2)f 2(θ2)dθ2

)
.

(B.1)

The last definition, M̃∗, is a hypothetical tax function that ensures that individuals with

shock θ1 are indifferent to any savings or report, i.e. W (x2, r
1, θ1) = ω(θ1) ∀x2, r

1, θ1. The

innovation of Werning (2011) is to show that since this tax function is implausible since it

would need to depend on both θ1 and report r1, the upper envelope over true types θ1 can

be used which gives the function M∗ which is only conditioned on report r1. This then rules

out misreporting in period 1 and 2.58

AssumingM∗ is differentiable at x2 = 0, the first-order condition of the worker augmented-

mechanism problem at zero savings and thruth-telling, when R is the gross rate of return

is

u′(c(θ1))M∗
x(0, θ1) = βR

∫
∂V (0, θ1, θ2)

∂x2

f 2(θ2)dθ2,

and this implies that

M∗
x(0, θ1) = βR

E(u′(c(θ2))

u′(c(θ1))
=

1

1− τK(θ1)
,

where τK(θ1) is the intertemporal wedge as defined above.

Now, consider the history-dependent tax system with labor income tax, T =
(
T1(y1), T2(y1, y2)

)
,

58Tax function M∗ is the lowest possible tax that prevents a deviation.
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and savings tax , M(x2, y1), where yt is labor income in a decentralized economy. The worker

has then the following budget constraints

c1 +M(x2, y1) ≤ y1 − T1(y1), (B.2)

c2 ≤ x2 + y2 − T2(y1, y2), (B.3)

The worker’s problem is then to maximize his lifetime utility subject to (B.2) and (B.3).

The market allocation of this decentralized economy is given by vectors {c̃, ỹ, x̃}. Following

Kapicka & Neira (2014) it is possible to prove a version of the taxation principle

Modified Taxation Principle: If an allocation, {c, y} is incentive compatible, i.e. (2.8)

is satisfied, then there exist a tax system such that M(0, y1) = 0 for all y1 and and

allocation {c, y, 0} solves the worker’s decentralized problem. Reciprocally, consider

a tax system, composed of T and M , that is such that {c, y, x2} solves the worker’s

decentralized problem, then the allocation is also incentive compatible.

The proof of this goes as follows, let

T1(y1(θ1)) = c1(θ1)− y1(θ1)

T2(y1(θ1), y2(θ2)) = c2(θ2)− y2(θ2)

M(x2, y1(θ1)) = M∗(x2, θ1), (B.4)

with T1 and T2 set very high for values of income not considered in the optimal plan such

that no worker would ever choose them. Defining M∗ has before and thus by construction I

have

ω(θ1) = W (0, θ1, θ1) ≥ max
x2

W (x2, r
1, θ1) ≥ W (0, r1, θ1) ∀r1 ∈ [θ, θ̄],
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and

ω(θ2) = V (0, θ2, θ2).

So choosing {c, y, 0} yields lifetime utility ω(θ1) for an individual of type θ1, and therefore

any other choice would lead to lower or equal lifetime utility. So this implies that {c, y, 0} is

the solution to the worker’s problem.

In the opposite way, if you take a tax system (T,M), and let {c, y, x2} be the solution

to the worker’s decentralized problem. Then it must be that a worker with history θ2 will

prefer allocation {c(θ2), y(θ2), x2(θ1)} over any other allocation {c(θ̃2), y(θ̃2), x2(θ̃2)}. This

implies that allocation {c, y} is incentive compatible.

From there it is straightforward to show that the optimal marginal tax rate on savings

will be 1
1−τK(θ1)

and that the marginal labor tax rates T ′1 and T ′2 evaluated at the optimal

allocation must coincide with the optimal labor wedges τL(θ1) and τL(θ2).

C Computational Information

C.1 Further Numerical Simulations
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Figure 9: Optimal Wedges: ρ = 1.2 with Changes in t=2’s σ
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Figure 10: Optimal Wedges: ρ = 1.2 with Changes in ζ
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