Designing Optimal Defaults

Jacob Goldin1 Daniel Reck2

1Stanford Law School

2University of Michigan

April 5, 2016
Motivation

Public economists like to

- Gather and analyze data on the effects of policies.
Motivation

Public economists like to

- Gather and analyze data on the effects of policies.
- Model the welfare consequences of these effects.
Motivation

Public economists like to

- Gather and analyze data on the effects of policies.
- Model the welfare consequences of these effects.
- Behavioral economics gives us lots of new policies to study...
Motivation

Public economists like to

► Gather and analyze data on the effects of policies.
► Model the welfare consequences of these effects.
► Behavioral economics gives us lots of new policies to study...
► ...and it destroys our existing welfare framework.
Motivation

Public economists like to

- Gather and analyze data on the effects of policies.
- Model the welfare consequences of these effects.
- Behavioral economics gives us lots of new policies to study...
- ...and it destroys our existing welfare framework.
- This paper examines this problem for the case of default options.
Motivation

Public economists like to

▶ Gather and analyze data on the effects of policies.
▶ Model the welfare consequences of these effects.
▶ Behavioral economics gives us lots of new policies to study...
▶ ...and it destroys our existing welfare framework.
▶ This paper examines this problem for the case of default options.

▶ Retirement savings (Madrian and Shea, 2001; Choi et al 2004; Carroll et al 2009; Chetty et al 2014; Bernheim Fradkin Popov 2016)
▶ Privacy controls (Johnson et al 2002; Acquisti et al 2013)
▶ Health (Chapman et al. 2010)
▶ Student loan repayment
The Classical View

- Classic revealed preference theory equates choice with welfare
 \[
 c_i(X, S) = \arg \max_{x \in S} u_i(x)
 \]
 \[
 w_i = u_i(c_i(x, S))
 \]

- Can add prices, endowments, taxes, etc.

- Default not usually modelled
- Then default effects are observed
- Rationalization: modify (1) (add to \(S \), \(u_i(.) \))
- Psychological costs, transaction costs, switching costs, etc.

- Can always be done for any behavioral observation?
- But then does (2) still hold?
The Classical View

- Classic revealed preference theory equates choice with welfare
 \[c_i(X, S) = \arg \max_{x \in S} u_i(x) \] (1)
 \[w_i = u_i(c_i(x, S)) \] (2)

- can add prices, endowments, taxes, etc.

- default not usually modelled
The Classical View

- Classic revealed preference theory equates choice with welfare:
 \[
 c_i(X, S) = \arg \max_{x \in S} u_i(x) \tag{1}
 \]
 \[
 w_i = u_i(c_i(x, S)) \tag{2}
 \]

- Can add prices, endowments, taxes, etc.
- Default not usually modelled
- Then default effects are observed
 - *rationalization*: modify (1) (add to S, u(.))
 - Psychological costs, transaction costs, switching costs, etc.
 - Can always be done for any behavioral observation?
The Classical View

- Classic revealed preference theory equates choice with welfare
 \[c_i(X, S) = \arg \max_{x \in S} u_i(x) \quad (1) \]
 \[w_i = u_i(c_i(x, S)) \quad (2) \]

- can add prices, endowments, taxes, etc.
- default not usually modelled
- then default effects are observed
 - rationalization: modify (1) (add to \(S, u(\cdot) \))
 - Psychological costs, transaction costs, switching costs, etc.
 - Can always be done for any behavioral observation?
 - But then does (2) still hold?
Rationalizing Default Effects

\[v_i(x(d), d) = u_i(x(d)) - \gamma_i 1\{x(d) \neq d\} \]

\(\gamma_i\) is an "as-if" cost.
Rationalizing Default Effects

\[v_i(x(d), d) = u_i(x(d)) - \gamma_i 1\{x(d) \neq d\} \] \hspace{1cm} (3)

- \(\gamma_i \) is an "as-if" cost.

- Are as-if costs true costs?
 - i.e. does \(w_i = v_i \)?
 - Some have proposed alternatives

▶ Yes: need a new rationalization for every behavioral finding
▶ But maybe the old normative model was correct?
▶ Leads to controversy over default policies
▶ Related problems for other behavioral phenomena
Rationalizing Default Effects

\[v_i(x(d), d) = u_i(x(d)) - \gamma_i 1\{x(d) \neq d\} \quad (3) \]

- \(\gamma_i \) is an "as-if" cost.
- Are as-if costs true costs?
 - i.e. does \(w_i = v_i \)?
 - Some have proposed alternatives
- Yes: need a new rationalization for every behavioral finding
- But maybe the old normative model was correct?
Rationalizing Default Effects

\[v_i(x(d), d) = u_i(x(d)) - \gamma_i 1\{x(d) \neq d\} \]

- \(\gamma_i \) is an "as-if" cost.
- Are as-if costs true costs?
 - i.e. does \(w_i = v_i \)?
 - Some have proposed alternatives

- Yes: need a new rationalization for every behavioral finding
- But maybe the old normative model was correct?
- Leads to controversy over default policies
- Related problems for other behavioral phenomena
This Paper

- Introduce a simple model of optimal defaults
 - *Parameterize* normative ambiguity

- Show that it nests several positive models

- Characterize welfare effects of default policies
 - Building towards sufficient statistics...

- Data?

- Lessons for other policy problems?
Part 1

A Simple Model of Defaults and Welfare
Setup

Behavior $x_i(d)$ given by:

$$\max_{x \in S} v_i(x, d) = u_i(x) - \gamma_i 1\{x \neq d\}$$
Setup

- Behavior \(x_i(d') \) given by:
 \[
 \max_{x\in S} v_i(x, d) = u_i(x) - \gamma_i 1\{x \neq d\}
 \]

- Welfare:
 \[
 w_i(x_i(d), d) = u_i(x_i(d)) - \rho_i \gamma_i 1\{x_i(d) \neq d\}
 \]

- \(\rho_i \in [0, 1] \): share of costs that are "normatively relevant."
Setup

> Behavior $x_i(d)$ given by:

$$\max_{x \in S} v_i(x, d) = u_i(x) - \gamma_i 1\{x \neq d\}$$

> Welfare:

$$w_i(x_i(d), d) = u_i(x_i(d)) - \rho_i \gamma_i 1\{x_i(d) \neq d\}$$

> $\rho_i \in [0, 1]$: share of costs that are "normatively relevant."

> Can add conventional structure to $u_i(.)$, S:

- Budget constraint (kinked in the 401(k) context)
- Taxes, dynamics, etc.
- Money metric
Setup

- Behavior $x_i(d)$ given by:
 $$\max_{x \in S} v_i(x, d) = u_i(x) - \gamma_i 1\{x \neq d\}$$

- Welfare:
 $$w_i(x_i(d), d) = u_i(x_i(d)) - \rho_i \gamma_i 1\{x_i(d) \neq d\}$$

- $\rho_i \in [0, 1]$: share of costs that are "normatively relevant."

- Can add conventional structure to $u_i(\cdot), S$:
 - Budget constraint (kinked in the 401(k) context)
 - Taxes, dynamics, etc.
 - Money metric

- Utilitarian social welfare $W_i(d) = \int_i w_i(x_i(d), d) di$
Setup

- Behavior $x_i(d)$ given by:

$$\max_{x \in S} v_i(x, d) = u_i(x) - \gamma_i 1\{x \neq d\}$$

- Welfare:

$$w_i(x_i(d), d) = u_i(x_i(d)) - \rho_i \gamma_i 1\{x_i(d) \neq d\}$$

- $\rho_i \in [0, 1]$: share of costs that are "normatively relevant."

- Can add conventional structure to $u_i(\cdot), S$:
 - Budget constraint (kinked in the 401(k) context)
 - Taxes, dynamics, etc.
 - Money metric

- Utilitarian social welfare $W_i(d) = \int_i w_i(x_i(d), d) di$

- Note: assuming a varily simple as-if cost function, could in principle be relaxed.
Part 2

Relationship to Positive Theory
Positive Theories: Classic Rationality

\[\rho_i = 1 \text{ for all } i. \]
Positive Theories: Classic Rationality

\[\rho_i = 1 \text{ for all } i. \]

\[\Rightarrow \rho_i \leq 1. \]

\[\quad \text{The end.} \]

\[\quad \text{...but you could argue that part of } \gamma_i \text{'s are psychological costs, maybe should be discarded?} \quad \Rightarrow \quad \rho_i \leq 1. \]
Positive Theories: Present Bias (Q-HD, Laibson 1997)

- Present bias can magnify small up-front costs (Carrol et al 2009)
- Costs incurred now, benefits in future, discounted by β_i
Positive Theories: Present Bias (Q-HD, Laibson 1997)

- Present bias can magnify small up-front costs (Carrol et al 2009)
- Costs incurred now, benefits in future, discounted by β_i
 \[
 \beta_i u_i(x) - \gamma_i I\{x_i \neq d\}
 \]
- Note: classical discounting (δ_i) suppressed in u_i
Positive Theories: Present Bias (Q-HD, Laibson 1997)

- Present bias can magnify small up-front costs (Carrol et al 2009)

- Costs incurred now, benefits in future, discounted by β_i
 \[\beta_i u_i(x) - \hat{\gamma}_i 1 \{x_i \neq d\} \]

- Note: classical discounting (δ_i) supressed in u_i
 \[\gamma_i = \frac{\hat{\gamma}_i}{\beta_i} \]

- Long-run ($\beta = 1$) view of welfare: $\rho_i = \beta_i$.
Positive Theories: Present Bias (Q-HD, Laibson 1997)

- Present bias can magnify small up-front costs (Carrol et al 2009)
- Costs incurred now, benefits in future, discounted by β_i
 \[\beta_i u_i(x) - \hat{\gamma}_i 1\{x_i \neq d\} \]
- Note: classical discounting (δ_i) suppressed in u_i
 \[\gamma_i = \frac{\hat{\gamma}_i}{\beta_i} \]
- Long-run ($\beta = 1$) view of welfare: $\rho_i = \beta_i$
- Short-run view of welfare: $\rho_i = 1$.
Positive Theories: Present Bias (Q-HD, Laibson 1997)

- Present bias can magnify small up-front costs (Carrol et al 2009)
- Costs incurred now, benefits in future, discounted by β_i
 \[\beta_i u_i(x) - \hat{\gamma}_i 1\{x_i \neq d\} \]
- Note: classical discounting (δ_i) suppressed in u_i
 \[\gamma_i = \frac{\hat{\gamma}_i}{\beta_i} \]
- Long-run ($\beta = 1$) view of welfare: $\rho_i = \beta_i$.
- Short-run view of welfare: $\rho_i = 1$.
- Note: with the right variation, δ_i, β_i are identified, but the "right" view of welfare is still unknown.
Positive Theories: Anchoring/Status Quo

- Give extra utility ω_i to default option:
 \[v_i(x, d) = u_i(x) + \omega_i 1\{x_i \neq d\} \]

- Assumes no spillovers to "near-default" choices
- Consistent with aggregate evidence on 401k
- Could relax with more sophisticated as-if cost function
Positive Theories: Anchoring/Status Quo

- Give extra utility ω_i to default option:

 $v_i(x, d) = u_i(x) + \omega_i 1\{x_i \neq d\}$

- Assumes no spillovers to "near-default" choices
- Consistent with aggregate evidence on 401k illustration
- Could relax with more sophisticated as-if cost function

- Then $\gamma_i \equiv -\omega_i$
Positive Theories: Anchoring/Status Quo

- Give extra utility ω_i to default option:
 \[v_i(x, d) = u_i(x) + \omega_i \mathbb{1}\{x_i \neq d\} \]

- Assumes no spillovers to "near-default" choices
- Consistent with aggregate evidence on 401k
- Could relax with more sophisticated as-if cost function

- Then $\gamma_i \equiv -\omega_i$

- Many think $\rho_i = 0$, one could argue otherwise (was default deliberately chosen?)
Positive Theories: Inattention

- Attention filter: $\Gamma_i(d) \subseteq S$ (Masatlioglu et al, 2012)
- Behavior: $\max_{x \in \Gamma_i(d)} u_i(x)$
Positive Theories: Inattention

- Attention filter: $\Gamma_i(d) \subseteq S$ (Masatlioglu et al, 2012)
- Behavior: $\max_{x \in \Gamma_i(d)} u_i(x)$
- Assume $\Gamma_i(d) \in \{\{d\}, S\}$
 - Could be relaxed with more sophisticated cost function?

Rationally chosen with full information
$\rho = 1$

A planner-doer model (Fudenberg and Levine, 2006)

Normatively equivalent to neoclassical model

Exogenous

Two types: either γ_i is arbitrarily large or $\gamma_i \approx 0$.

ρ_i becomes irrelevant to policy/behavior

Contradicted by aggregate data on 401k.

Rationally chosen with less than full information??

ρ_i depends on how accurate beliefs are?

Some $\rho_i > 1$?
Positive Theories: Inattention

- Attention filter: $\Gamma_i(d) \subseteq S$ (Masatlioglu et al., 2012)
- Behavior: $\max_{x \in \Gamma_i(d)} u_i(x)$
- Assume $\Gamma_i(d) \in \{\{d\}, S\}$
 - Could be relaxed with more sophisticated cost function?
- Endogenize Γ_i to close the model:
 - Rationally chosen with full information $\implies \rho = 1$
 - A planner-doer model (Fudenberg and Levine, 2006)
 - Normatively equivalent to neoclassical model
Positive Theories: Inattention

- Attention filter: $\Gamma_i(d) \subseteq S$ (Masatlioglu et al, 2012)
- Behavior: $\max_{x \in \Gamma_i(d)} u_i(x)$
- Assume $\Gamma_i(d) \in \{\{d\}, S\}$
 - Could be relaxed with more sophisticated cost function?
- Endogenize Γ_i to close the model:
 - Rationally chosen with full information $\implies \rho = 1$
 - A planner-doer model (Fudenberg and Levine, 2006)
 - Normatively equivalent to neoclassical model
- Exogenous
 - Two types: either γ_i is arbitrarily large or $\gamma_i \approx 0$.
 - ρ_i becomes irrelevant to policy/behavior
 - Contradicted by aggregate data on 401k.
Positive Theories: Inattention

- Attention filter: $\Gamma_i(d) \subseteq S$ (Masatlioglu et al, 2012)
- Behavior: $\max_{x \in \Gamma_i(d)} u_i(x)$
- Assume $\Gamma_i(d) \in \{\{d\}, S\}$
 - Could be relaxed with more sophisticated cost function?
- Endogenize Γ_i to close the model:
 - Rationally chosen with full information $\implies \rho = 1$
 - A planner-doer model (Fudenberg and Levine, 2006)
 - Normatively equivalent to neoclassical model
- Exogenous
 - Two types: either γ_i is arbitrarily large or $\gamma_i \approx 0$.
 - ρ_i becomes irrelevant to policy/behavior
 - Contradicted by aggregate data on 401k.
- Rationally chosen with less than full information??
 - ρ depends on how accurate beliefs are?
 - Some $\rho_i > 1$?
Takeaways

- This simple framework nests many positive models

- Models differ by ρ_i’s

- Could easily combine some of these models.

- \implies At least any value $\rho \in [0, 1]$ is plausible, maybe even $\rho > 1$.
Part 3

Characterizing Optimal Policy
Binary Case

- Consider a fixed binary menu $S = \{0, 1\}$

- Monotonicity: $\gamma_i \geq 0$ for all i implies $(x_i(0), x_i(1)) \neq (1, 0)$

- Let $\Delta u_i = u_i(1) - u_i(0)$
Binary Case

- Consider a fixed binary menu $S = \{0, 1\}$

- Monotonicity: $\gamma_i \geq 0$ for all i implies $(x_i(0), x_i(1)) \neq (1, 0)$

- Let $\Delta u_i = u_i(1) - u_i(0)$

Proposition:

\[W(1) - W(0) = E[\rho_i \gamma_i|1, 1]p_{11} - E[\rho_i \gamma_i|0, 0]p_{00} + E[\Delta u_i|0, 1]p_{01} \]
Binary Case

Proposition: Suppose

- $\rho_i \gamma_i \perp \Delta u_i$.
- the distribution of Δu_i is single peaked and symmetric.

Then $p_{11} > p_{00} \iff W(1) \geq W(0)$

Remarks

- Doesn’t depend on ρ_i: normative ambiguity only if above assumptions fail
- Assumptions are unrealistic but often assumed for tractability
- Minimizing opt-outs (Thaler and Sunstein 2003)
- Easily conditioned on observables
- Assumptions testable/relaxable with the right data
Binary Case

Proposition: Suppose

- $\rho_i \gamma_i \perp \Delta u_i$.
- the distribution of Δu_i is single peaked and symmetric.

Then $p_{11} > p_{00} \iff W(1) \geq W(0)$

Remarks

- Doesn’t depend on ρ_i: normative ambiguity only if above assumptions fail
Binary Case

Proposition: Suppose

1. $\rho_i \gamma_i \perp \Delta u_i$.
2. the distribution of Δu_i is single peaked and symmetric.

Then $p_{11} > p_{00} \iff W(1) \geq W(0)$

Remarks

1. Doesn’t depend on ρ_i: normative ambiguity only if above assumptions fail
2. Assumptions are unrealistic but often assumed for tractability
Binary Case

Proposition: Suppose

- $\rho_i \gamma_i \perp \Delta u_i$.
- the distribution of Δu_i is single peaked and symmetric.

Then $p_{11} > p_{00} \iff W(1) \geq W(0)$

Remarks

- Doesn’t depend on ρ_i: normative ambiguity only if above assumptions fail
- Assumptions are unrealistic but often assumed for tractability
- Minimizing opt-outs (Thaler and Sunstein 2003)
Binary Case

Proposition: Suppose

- $\rho_i \gamma_i \perp \Delta u_i$.
- the distribution of Δu_i is single peaked and symmetric.

Then $p_{11} > p_{00} \iff W(1) \geq W(0)$

Remarks

- Doesn’t depend on ρ_i: normative ambiguity only if above assumptions fail
- Assumptions are unrealistic but often assumed for tractability
- Minimizing opt-outs (Thaler and Sunstein 2003)
- Easily conditioned on observables
Binary Case

Proposition: Suppose

- $\rho_i \gamma_i \perp \Delta u_i$.
- the distribution of Δu_i is single peaked and symmetric.

Then $p_{11} > p_{00} \iff W(1) \geq W(0)$

Remarks

- Doesn’t depend on ρ_i: normative ambiguity only if above assumptions fail
- Assumptions are unrealistic but often assumed for tractability
- Minimizing opt-outs (Thaler and Sunstein 2003)
- Easily conditioned on observables
- Assumptions testable/relaxable with the right data
Binary Case

Proposition: Suppose

- $\rho_i \gamma_i \perp \Delta u_i$.
- the distribution of Δu_i is single peaked and symmetric.

Then $p_{11} > p_{00} \iff W(1) \geq W(0)$

Remarks

- Doesn’t depend on ρ_i: normative ambiguity only if above assumptions fail
- Assumptions are unrealistic but often assumed for tractability
- Minimizing opt-outs (Thaler and Sunstein 2003)
- Easily conditioned on observables
- Assumptions testable/relaxable with the right data
- Size of $W(1) - W(0)$ does depend on ρ
Building Toward the General Case

- Consider a fixed arbitrary menu S
- Define *active choosers* at default d:

$$a_i(d) = 1\{x_i(d) \neq d\}$$

Identification: $a_i(d) = 1 \Rightarrow x_i(d) = x_i^*$

Falsifiable for any i with ideal dataset
Building Toward the General Case

- Consider a fixed arbitrary menu S
- Define *active choosers* at default d:
 $$a_i(d) = 1 \{ x_i(d) \neq d \}$$

- Let $x_i^* = \text{arg max}_{x \in S} u_i(x)$
- Identification:
 $$a_i(d) = 1 \implies x_i = x_i^*$$

- Falsifiable for any i with ideal dataset
When Might ρ_i Matter For Policy?

Case 1: Active choices:

- Suppose there is a default d^A that is so bad that $a_i(d') = 1$ for every i (Carroll et al 2009)

- Further suppose $\rho_i = 0$ for all i.

Then d^A is plainly the optimal default.

However, when $\rho_i > 0$ and γ_i is large, this will tend to fail.

Case 2: Uniform preferences:

- Suppose for all i, $x^*_i = x$ for some $x \in S$.

Then $d = x^*_i$ is plainly the optimal default, regardless of ρ_i.

When Might ρ_i Matter For Policy?

Case 1: Active choices:

▶ Suppose there is a default d^A that is so bad that $a_i(d^A) = 1$ for every i (Carroll et al 2009)

▶ Further suppose $\rho_i = 0$ for all i.

▶ Then d^A is plainly the optimal default.

▶ However, when $\rho_i > 0$ and γ_i is large, this will tend to fail.
When Might ρ_i Matter For Policy?

Case 1: Active choices:

- Suppose there is a default d^A that is so bad that $a_i(d') = 1$ for every i (Carroll et al 2009)

- Further suppose $\rho_i = 0$ for all i.

- Then d^A is plainly the optimal default.

- However, when $\rho_i > 0$ and γ_i is large, this will tend to fail.

Case 2: Uniform preferences:

- Suppose for all i, $x^*_i = x$ for some $x \in S$.
When Might ρ_i Matter For Policy?

Case 1: Active choices:

► Suppose there is a default d^A that is so bad that $a_i(d') = 1$ for every i (Carroll et al 2009)

► Further suppose $\rho_i = 0$ for all i.

► Then d^A is plainly the optimal default.

► However, when $\rho_i > 0$ and γ_i is large, this will tend to fail.

Case 2: Uniform preferences:

► Suppose for all i, $x_i^* = x$ for some $x \in S$.

► Then $d = x_i^*$ is plainly the optimal default, regardless of ρ.
Some intuition

Normative ambiguity appears to occur when

- γ_i is large,
- the space of possible defaults (S) is rich, and/or
- optimal choices (x_i^*) are more heterogeneous.
Effect of a Change in the Default

Consider two defaults: \((d_0, d_1)\). Define:

- **Always active (AA)**: \(a_i(d_0) = a_i(d_1) = 1\)
 \[u_i(x^*) - \max\{u_i(d_0), u_i(d_1)\} \geq \gamma_i \]

- **Always passive (AP)**: \(a_i(d_0) = a_i(d_1) = 0\)

- **Become passive (BP)**: \(a_i(d_0) = 1; a_i(d_1) = 0\)

- **Become active (BA)**: \(a_i(d_0) = 0; a_i(d_1) = 1\)
Effect of a Change in the Default

Consider two defaults: \((d_0, d_1)\). Define:

- **Always active (AA):**
 \[a_i(d_0) = a_i(d_1) = 1 \]
 \[u_i(x^*) - \max\{u_i(d_0), u_i(d_1)\} \geq \gamma_i \]

- **Always passive (AP):**
 \[a_i(d_0) = a_i(d_1) = 0 \]
 \[u_i(x^*) - \min\{u_i(d_0), u_i(d_1)\} < \gamma_i \]
Effect of a Change in the Default

Consider two defaults: \((d_0, d_1)\). Define:

- **Always active (AA):** \(a_i(d_0) = a_i(d_1) = 1\)
 \[
 u_i(x^*) - \max\{u_i(d_0), u_i(d_1)\} \geq \gamma_i
 \]

- **Always passive (AP):** \(a_i(d_0) = a_i(d_1) = 0\)
 \[
 u_i(x^*) - \min\{u_i(d_0), u_i(d_1)\} < \gamma_i
 \]

- **Become passive (BP):** \(a_i(d_0) = 1; \ a_i(d_1) = 0\)
 \[
 u_i(x^*) - u_i(d_1) < \gamma_i < u_i(x^*) - u_i(d_0)
 \]
Effect of a Change in the Default

Consider two defaults: \((d_0, d_1)\). Define:

- **Always active (AA):**
 \[
 a_i(d_0) = a_i(d_1) = 1 \\
 u_i(x^*) - \max\{u_i(d_0), u_i(d_1)\} \geq \gamma_i
 \]

- **Always passive (AP):**
 \[
 a_i(d_0) = a_i(d_1) = 0 \\
 u_i(x^*) - \min\{u_i(d_0), u_i(d_1)\} < \gamma_i
 \]

- **Become passive (BP):**
 \[
 a_i(d_0) = 1; \ a_i(d_1) = 0 \\
 u_i(x^*) - u_i(d_1) < \gamma_i < u_i(x^*) - u_i(d_0)
 \]

- **Become active (BA):**
 \[
 a_i(d_0) = 0; \ a_i(d_1) = 1 \\
 u_i(x^*) - u_i(d_0) < \gamma_i < u_i(x^*) - u_i(d_1)
 \]
The Welfare Effect of a Default Change

Proposition:

\[W(d_1) - W(d_0) = E[u_i(x^\ast) - u_i(d_0) - \rho \gamma_i|BA]p_{BA} \]
\[- E[u_i(x^\ast) - u_i(d_1) - \rho \gamma_i|BP]p_{BP} \]
\[+ E[u_i(d_1) - u_i(d_0)|AP]p_{AP} \]

Remarks:

▶ Welfare of AA group is irrelevant
▶ Need to further characterize when \(sign(W(d_1) - W(d_0)) \) depends on \(\rho \)’s.
▶ Intuitively \(\rho \) will only matter if BA and BP have very different \(\gamma \) or \(u \).
The Welfare Effect of a Default Change

Proposition:

\[W(d_1) - W(d_0) = E[u_i(x^*) - u_i(d_0) - \rho \gamma_i | BA]p_{BA} \]
\[- E[u_i(x^*) - u_i(d_1) - \rho \gamma_i | BP]p_{BP} \]
\[+ E[u_i(d_1) - u_i(d_0) | AP]p_{AP} \]

Remarks:

▶ Welfare of AA group is irrelevant
The Welfare Effect of a Default Change

Proposition:

\[W(d_1) - W(d_0) = E[u_i(x^*) - u_i(d_0) - \rho_i \gamma_i|BA]p_{BA} \]
\[- E[u_i(x^*) - u_i(d_1) - \rho_i \gamma_i|BP]p_{BP} \]
\[+ E[u_i(d_1) - u_i(d_0)|AP]p_{AP} \]

Remarks:

▶ Welfare of AA group is irrelevant

▶ Need to further characterize when \(\text{sign}(W(d_1) - W(d_0)) \) depends on \(\rho_i \)’s.
The Welfare Effect of a Default Change

Proposition:

\[W(d_1) - W(d_0) = E[u_i(x^*) - u_i(d_0) - \rho \gamma_i | BA] p_{BA} \]
\[- E[u_i(x^*) - u_i(d_1) - \rho \gamma_i | BP] p_{BP} \]
\[+ E[u_i(d_1) - u_i(d_0) | AP] p_{AP} \]

Remarks:

- Welfare of AA group is irrelevant
- Need to further characterize when \(\text{sign}(W(d_1) - W(d_0)) \) depends on \(\rho_i \)'s.
- Intuitively \(\rho \) will only matter if BA and BP have very different \(\gamma \) or \(u \)
The Welfare Effect of a Default Change

Proposition:

\[W(d_1) - W(d_0) = E[u_i(x^*) - u_i(d_0) - \rho \gamma_i|BA]p_{BA} \]
\[- E[u_i(x^*) - u_i(d_1) - \rho \gamma_i|BP]p_{BP} \]
\[+ E[u_i(d_1) - u_i(d_0)|AP]p_{AP} \]

Remarks:

- Welfare of AA group is irrelevant
- Need to further characterize when \(\text{sign}(W(d_1) - W(d_0)) \) depends on \(\rho_i \)'s.
- Intuitively \(\rho \) will only matter if BA and BP have very different \(\gamma \) or \(u \)
Welfare Effect of a *Marginal* Default Change

- Suppose $S = [a, b] \subseteq \mathbb{R}$
- Using TSA the previous proposition becomes:

$$
\Delta W \approx \Delta d \left\{ E[(1 - \rho_i)\gamma_i|BA]p_{BA} - E[(1 - \rho_i)\gamma_i|BP]p_{BP} + E \left[\frac{du}{dx} \bigg|_{x=d} \right] p_{AP} \right\}
$$
Welfare Effect of a *Marginal* Default Change

- Suppose $S = [a, b] \subseteq \mathbb{R}$
- Using TSA the previous proposition becomes:

$$
\Delta W \approx \Delta d \left\{ E[(1 - \rho_i)\gamma_i|BA] \rho_{BA} - E[(1 - \rho_i)\gamma_i|BP] \rho_{BP}
+ E \left[\frac{du}{dx} \bigg|_{x=d} \right]_{AP} \rho_{AP} \right\}
$$

- Follows from $u_i(x_i^*) - u_i(d) \equiv \gamma_i$ if BA, BP
Welfare Effect of a *Marginal* Default Change

- Suppose \(S = [a, b] \subseteq \mathbb{R} \)
- Using TSA the previous proposition becomes:

\[
\Delta W \approx \Delta d \left\{ E[(1 - \rho_i)\gamma_i|BA]p_{BA} - E[(1 - \rho_i)\gamma_i|BP]p_{BP}
+ E \left[\frac{du}{dx} \bigg|_{x=d} \right] p_{AP} \right\}
\]

- Follows from \(u_i(x_i^*) - u_i(d) \equiv \gamma_i \) if BA, BP

Remarks

- \(\rho_i = 1 \implies \) BA, BP vanish

 - The envelope theorem!
Welfare Effect of a *Marginal* Default Change

- Suppose $S = [a, b] \subseteq \mathbb{R}$
- Using TSA the previous proposition becomes:

$$
\Delta W \approx \Delta d\left\{ E[(1 - \rho_i)\gamma_i | BA]p_{BA} - E[(1 - \rho_i)\gamma_i | BP]p_{BP} \\
+ E\left[\frac{du}{dx}\bigg|_{x=d} \right]_{AP} p_{AP}\right\}
$$

- Follows from $u_i(x_i^*) - u_i(d) \equiv \gamma_i$ if BA, BP

Remarks
- $\rho_i = 1 \implies$ BA, BP vanish
 - The envelope theorem!
 - Mechanically $\frac{du}{dx}\bigg|_{x=d}$ will be smaller for the AP group than others
Welfare Effect of a *Marginal* Default Change

- Suppose $S = [a, b] \subseteq \mathbb{R}$
- Using TSA the previous proposition becomes:

$$\Delta W \approx \Delta d \left\{ E[(1 - \rho_i)\gamma_i|BA]p_{BA} - E[(1 - \rho_i)\gamma_i|BP]p_{BP} \\
+ E \left[\frac{du}{dx} \bigg|_{x=d} \right]_{AP} p_{AP} \right\}$$

- Follows from $u_i(x_i^*) - u_i(d) \equiv \gamma_i$ if BA, BP

Remarks

- $\rho_i = 1 \implies$ BA, BP vanish
 - The envelope theorem!
 - Mechanically $\frac{du}{dx} \bigg|_{x=d}$ will be smaller for the AP group than others
- With $\rho_i \ll 1$ BA and BP groups become much more important
Welfare Effect of a \textit{Marginal} Default Change

- Suppose $S = [a, b] \subseteq \mathbb{R}$
- Using TSA the previous proposition becomes:

$$\Delta W \approx \Delta d \left\{ E [(1 - \rho_i)\gamma_i|BA] p_{BA} - E [(1 - \rho_i)\gamma_i|BP] p_{BP} + E \left[\left. \frac{du}{dx} \right|_{x=d} \right] p_{AP} \right\}$$

- Follows from $u_i(x_i^*) - u_i(d) \equiv \gamma_i$ if BA, BP

Remarks

- $\rho_i = 1 \implies$ BA, BP vanish
 - The envelope theorem!
 - Mechanically $\left. \frac{du}{dx} \right|_{x=d}$ will be smaller for the AP group than others

- With $\rho_i \ll 1$ BA and BP groups become much more important

- Can prove a similar proposition to before with $\left. \frac{du_i}{dx} \right|_{x=d}$ symmetric, single-peaked, independent of ρ_i, γ_i.
CONJECTURES

When does \(\text{sign}(\Delta W)\) depend on \(\rho_i\)'s?

- when \(\Delta u_i\) has a highly asymmetric distribution, and
- when \(\gamma_i\)'s are large and correlated with \(\Delta u_i\)
- when \(\text{sign}(\Delta W_{BA} + \Delta W_{BP}) \neq \text{sign}(\Delta W_{AP})\)

When is \(|\Delta W|\) invariant to \(\rho\)? Never.
CONJECTURES

When does $\text{sign}(\Delta W)$ depend on ρ_i’s?

- when Δu_i has a highly asymmetric distribution, and
- when γ_i’s are large and correlated with Δu_i
- when $\text{sign}(\Delta W_{BA} + \Delta W_{BP}) \neq \text{sign}(\Delta W_{AP})$

When is $|\Delta W|$ invariant to ρ? Never.

Identifying distribution of $\gamma_i, u_i(\cdot)$ (parameterized) is a tractable RP problem

- but no model can identify ρ.
- Components of γ might be separated empirically, e.g. present bias,
- but discarding some of them still requires normative judgement.
Part 4

Conclusions
Optimal Policy and Normative Ambiguity

► When ρ is irrelevant for policy

► e.g. kinks in budget for 401(k) \implies optimal default will tend to be at 0 or max employer match (Bernheim Fradkin Popov 2015).

► Thus Bernheim and Rangel’s (2009) welfare criterion resembles robustness a la Hansen and Sargent (2016).

► But beware: seemingly innocuous structural assumptions can cause this to happen unintentionally.

► When ρ does matter for optimal policy

► Then setting an optimal default requires a normative judgement

► Usually we leave these judgements to policymakers

► But we can still tell policymakers about the map from ρ’s to optimal policy.

► e.g. if you think $\rho=0$, maximizing active choices looks great; if you think $\rho=1$, maybe minimize opt-outs.
Optimal Policy and Normative Ambiguity

- When ρ is irrelevant for policy
 - e.g. kinks in budget for 401(k) \implies optimal default will tend to be at 0 or max employer match (Bernheim Fradkin Popov 2015).
 - Thus Bernhiem and Rangel’s (2009) welfare criterion resembles robustness a la Hansen and Sargent (2016).
Optimal Policy and Normative Ambiguity

► When ρ is irrelevant for policy
 ► e.g. kinks in budget for 401(k) \implies optimal default will tend to be at 0 or max employer match (Bernheim Fradkin Popov 2015).
 ► Thus Bernhiem and Rangel's (2009) welfare criterion resembles robustness a la Hansen and Sargent (2016).
 ► But beware: seemingly innocuous structural assumptions can cause this to happen unintentionally.

► When ρ does matter for optimal policy
 ► Usually we leave these judgements to policymakers
 ► But we can still tell policymakers about the map from ρ's to optimal policy.
 ► e.g. if you think $\rho = 0$, maximizing active choices looks great; if you think $\rho = 1$, maybe minimize opt-outs.
Optimal Policy and Normative Ambiguity

- When ρ is irrelevant for policy
 - e.g. kinks in budget for 401(k) \implies optimal default will tend to be at 0 or max employer match (Bernheim Fradkin Popov 2015).
 - Thus Bernhiem and Rangel’s (2009) welfare criterion resembles robustness a la Hansen and Sargent (2016).
 - But beware: seemingly innocuous structural assumptions can cause this to happen unintentionally.

- When ρ does matter for optimal policy
 - Then setting an optimal default requires a normative judgement
Optimal Policy and Normative Ambiguity

► When ρ is irrelevant for policy
 ► e.g. kinks in budget for 401(k) \implies optimal default will tend to be at 0 or max employer match (Bernheim Fradkin Popov 2015).
 ► Thus Bernhiem and Rangel’s (2009) welfare criterion resembles robustness a la Hansen and Sargent (2016).
 ► But beware: seemingly innocuous structural assumptions can cause this to happen unintentionally.

► When ρ does matter for optimal policy
 ► Then setting an optimal default requires a normative judgement
 ► Usually we leave these judgements to policymakers
Optimal Policy and Normative Ambiguity

► When ρ is irrelevant for policy
 ► e.g. kinks in budget for 401(k) \implies optimal default will tend to be at 0 or max employer match (Bernheim Fradkin Popov 2015).
 ► Thus Bernhiem and Rangel’s (2009) welfare criterion resembles robustness a la Hansen and Sargent (2016).
 ► But beware: seemingly innocuous structural assumptions can cause this to happen unintentionally.

► When ρ does matter for optimal policy
 ► Then setting an optimal default requires a normative judgement
 ► Usually we leave these judgements to policymakers
 ► But we can still tell policymakers about the map from ρ’s to optimal policy.
Optimal Policy and Normative Ambiguity

► When ρ is irrelevant for policy
 ► e.g. kinks in budget for 401(k) \implies optimal default will tend to be at 0 or max employer match (Bernheim Fradkin Popov 2015).
 ► Thus Bernhiem and Rangel’s (2009) welfare criterion resembles robustness a la Hansen and Sargent (2016).
 ► But beware: seemingly innocuous structural assumptions can cause this to happen unintentionally.

► When ρ does matter for optimal policy
 ► Then setting an optimal default requires a normative judgement
 ► Usually we leave these judgements to policymakers
 ► But we can still tell policymakers about the map from ρ’s to optimal policy.
 ► e.g. if you think $\rho = 0$, maximizing active choices looks great; if you think $\rho = 1$, maybe minimize opt-outs.
Does this sound familiar?

Public economics employs two types of optimal policy analysis

- Efficiency arguments (Kaldor, 1939; Hicks, 1939, 1940)
 - Take no stand on whose utility matters more.
 - Revealed preferences alone are sufficient.

- Equity-efficiency tradeoffs (Mirrlees, 1971)
 - Requires a normative judgement re: the value of equity, often parameterized (see e.g. Saez, 2001)
 - \(\rho \) does matter for optimal policy.
Does this sound familiar?

Public economics employs two types of optimal policy analysis:

- **Efficiency arguments** (Kaldor, 1939; Hicks, 1939, 1940)
 - Take no stand on whose utility matters more.
 - Revealed preferences alone are sufficient.
 - \(\equiv\) when \(\rho\) doesn’t matter for optimal policy.

- **Equity-efficiency tradeoffs** (Mirrlees, 1971)
 - Requires a normative judgement re: the value of equity, often parameterized (see e.g. Saez, 2001)
 - \(\equiv\) when \(\rho\) matters for optimal policy.
Does this sound familiar?

Public economics employs two types of optimal policy analysis

- Efficiency arguments (Kaldor, 1939; Hicks, 1939, 1940)
 - Take no stand on whose utility matters more.
 - Revealed preferences alone are sufficient.
 - \(\equiv \) when \(\rho \) doesn’t matter for optimal policy.

- Equity-efficiency tradeoffs (Mirrlees, 1971)
 - requires a normative judgement re: the value of equity, often parameterized (see e.g. Saez, 2001)
Does this sound familiar?

Public economics employs two types of optimal policy analysis

- Efficiency arguments (Kaldor, 1939; Hicks, 1939, 1940)
 - Take no stand on whose utility matters more.
 - Revealed preferences alone are sufficient.
 - \equiv when ρ doesn’t matter for optimal policy.

- Equity-efficiency tradeoffs (Mirrlees, 1971)
 - requires a normative judgement re: the value of equity, often parameterized (see e.g. Saez, 2001)
 - \equiv when ρ does matter for optimal policy.
Does this sound familiar?

Public economics employs two types of optimal policy analysis

- Efficiency arguments (Kaldor, 1939; Hicks, 1939, 1940)
 - Take no stand on whose utility matters more.
 - Revealed preferences alone are sufficient.
 - \equiv when ρ doesn’t matter for optimal policy.

- Equity-efficiency tradeoffs (Mirrlees, 1971)
 - requires a normative judgement re: the value of equity,
 often parameterized (see e.g. Saez, 2001)
 - \equiv when ρ *does* matter for optimal policy.

Can a similar distinction lead to a broad consensus about optimal defaults...about behavioral welfare ecooomics?
Where to next?

- Fill in the gaps in the above, esp if "sufficient statistics" can be derived.
Where to next?

- Fill in the gaps in the above, esp if "sufficient statistics" can be derived.

- Empirical application? ID everything but ρ, show that it can matter?
Where to next?

- Fill in the gaps in the above, esp if "sufficient statistics" can be derived.

- Empirical application? ID everything but ρ, show that it can matter? [start]

- Relaxing the stricter positive assumptions (may lead to partial ID results in the empirics...)
Where to next?

- Fill in the gaps in the above, esp if "sufficient statistics" can be derived.

- Empirical application? ID everything but ρ, show that it can matter? ▶ start

- Relaxing the stricter positive assumptions (may lead to partial ID results in the empirics...)

- Generalizations:
 - Express "true" welfare as a weighted sum of utility functions that rationalize behavior in different frames, weights $\equiv \rho$.

27 / 28
Where to next?

- Fill in the gaps in the above, esp if "sufficient statistics" can be derived.

- Empirical application? ID everything but \(\rho \), show that it can matter? [start]

- Relaxing the stricter positive assumptions (may lead to partial ID results in the empirics...)

- Generalizations:
 - Express "true" welfare as a weighted sum of utility function that rationalize behavior in different frames, weights \(\equiv \rho \).
 - Temptation: \(u \) vs \(u + v \)
 - Present bias: \(\beta = 1 \) and \(\beta < 1 \)
 - Gain/loss framing? Others?
THANK YOU!

Questions/comments: dreck@umich.edu
Defaults with richer choice sets: Application

- Aggregate data from Bernheim et al (2016)
Defaults with richer choice sets: Application

- Aggregate data from Bernheim et al (2016)
- Distribution of contribution rates to 401(k) plan
Defaults with richer choice sets: Application

- Aggregate data from Bernheim et al (2016)
- Distribution of contribution rates to 401(k) plan
- Firm increases default rate of contribution from 3 to 4 percent
Defaults with richer choice sets: Application

- Aggregate data from Bernheim et al (2016)
- Distribution of contribution rates to 401(k) plan
- Firm increases default rate of contribution from 3 to 4 percent
- Enrollment contributions of newly eligible workers before and after switch
Defaults with richer choice sets: Application

- Aggregate data from Bernheim et al (2016)
- Distribution of contribution rates to 401(k) plan
- Firm increases default rate of contribution from 3 to 4 percent
- Enrollment contributions of newly eligible workers before and after switch
- 15% max contribution
- Large kink at 6% from 1:1 employer match
Defaults with richer choice sets: Aggregate data

![Contribution rates under alternate defaults](chart.png)

- back to anchoring
- back to next steps
Defaults with richer choice sets: Identified distributions
Defaults with richer choice sets: Identified distributions

Aggregate Preferences of 'Ever Active' Choosers

![Chart showing data analysis on 'Ever Active' choosers preferences.](chart.png)